X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/588bdd7ed74cf8fe8fd0f15df58a6a40c26ebae5..47e9367ed5c61b721bdc17cddd76bced4f8ed621:/simulations/02_indep_differential.R diff --git a/simulations/02_indep_differential.R b/simulations/02_indep_differential.R index d4e0916..d4c4397 100644 --- a/simulations/02_indep_differential.R +++ b/simulations/02_indep_differential.R @@ -31,17 +31,17 @@ source("simulation_base.R") ## one way to do it is by adding correlation to x.obs and y that isn't in w. ## in other words, the model is missing an important feature of x.obs that's related to y. -simulate_data <- function(N, m, B0, Bxy, Bgy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, accuracy_imbalance_difference=0.3){ +simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, y_bias=-0.8,accuracy_imbalance_difference=0.3){ set.seed(seed) # make w and y dependent - g <- rbinom(N, 1, 0.5) - x <- rbinom(N, 1, 0.5) + z <- rbinom(N, 1, plogis(qlogis(0.5))) + x <- rbinom(N, 1, plogis(Bzx * z + qlogis(0.5))) - y.var.epsilon <- (var(Bgy * g) + var(Bxy *x) + 2*cov(Bgy*g,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance) + y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bzy*z,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance) y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon)) - y <- Bgy * g + Bxy * x + y.epsilon - - df <- data.table(x=x,y=y,g=g) + y <- Bzy * z + Bxy * x + y.epsilon + + df <- data.table(x=x,y=y,z=z) if(m < N){ df <- df[sample(nrow(df), m), x.obs := x] @@ -49,61 +49,126 @@ simulate_data <- function(N, m, B0, Bxy, Bgy, seed, y_explained_variance=0.025, df <- df[, x.obs := x] } - df <- df[,w_pred:=x] - - pg <- mean(g) - px <- mean(x) - accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) - - # this works because of conditional probability - accuracy_g0 <- prediction_accuracy / (pg*(accuracy_imbalance_ratio) + (1-pg)) - accuracy_g1 <- accuracy_imbalance_ratio * accuracy_g0 - - dfg0 <- df[g==0] - ng0 <- nrow(dfg0) - dfg1 <- df[g==1] - ng1 <- nrow(dfg1) - - dfg0 <- dfg0[sample(ng0, (1-accuracy_g0)*ng0), w_pred := (w_pred-1)**2] - dfg1 <- dfg1[sample(ng1, (1-accuracy_g1)*ng1), w_pred := (w_pred-1)**2] - - df <- rbind(dfg0,dfg1) - - w <- predict(glm(x ~ w_pred,data=df,family=binomial(link='logit')),type='response') - df <- df[,':='(w=w, w_pred = w_pred)] + ## probablity of an error is correlated with y + ## pz <- mean(z) + ## accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) + + ## # this works because of conditional probability + ## accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz)) + ## accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0 + + ## z0x0 <- df[(z==0) & (x==0)]$x + ## z0x1 <- df[(z==0) & (x==1)]$x + ## z1x0 <- df[(z==1) & (x==0)]$x + ## z1x1 <- df[(z==1) & (x==1)]$x + + ## yz0x0 <- df[(z==0) & (x==0)]$y + ## yz0x1 <- df[(z==0) & (x==1)]$y + ## yz1x0 <- df[(z==1) & (x==0)]$y + ## yz1x1 <- df[(z==1) & (x==1)]$y + + ## nz0x0 <- nrow(df[(z==0) & (x==0)]) + ## nz0x1 <- nrow(df[(z==0) & (x==1)]) + ## nz1x0 <- nrow(df[(z==1) & (x==0)]) + ## nz1x1 <- nrow(df[(z==1) & (x==1)]) + + ## yz1 <- df[z==1]$y + ## yz1 <- df[z==1]$y + + ## # tranform yz0.1 into a logistic distribution with mean accuracy_z0 + ## acc.z0x0 <- plogis(0.5*scale(yz0x0) + qlogis(accuracy_z0)) + ## acc.z0x1 <- plogis(0.5*scale(yz0x1) + qlogis(accuracy_z0)) + ## acc.z1x0 <- plogis(1.5*scale(yz1x0) + qlogis(accuracy_z1)) + ## acc.z1x1 <- plogis(1.5*scale(yz1x1) + qlogis(accuracy_z1)) + + ## w0z0x0 <- (1-z0x0)**2 + (-1)**(1-z0x0) * acc.z0x0 + ## w0z0x1 <- (1-z0x1)**2 + (-1)**(1-z0x1) * acc.z0x1 + ## w0z1x0 <- (1-z1x0)**2 + (-1)**(1-z1x0) * acc.z1x0 + ## w0z1x1 <- (1-z1x1)**2 + (-1)**(1-z1x1) * acc.z1x1 + + ## ##perrorz0 <- w0z0*(pyz0) + ## ##perrorz1 <- w0z1*(pyz1) + + ## w0z0x0.noisy.odds <- rlogis(nz0x0,qlogis(w0z0x0)) + ## w0z0x1.noisy.odds <- rlogis(nz0x1,qlogis(w0z0x1)) + ## w0z1x0.noisy.odds <- rlogis(nz1x0,qlogis(w0z1x0)) + ## w0z1x1.noisy.odds <- rlogis(nz1x1,qlogis(w0z1x1)) + + ## df[(z==0)&(x==0),w:=plogis(w0z0x0.noisy.odds)] + ## df[(z==0)&(x==1),w:=plogis(w0z0x1.noisy.odds)] + ## df[(z==1)&(x==0),w:=plogis(w0z1x0.noisy.odds)] + ## df[(z==1)&(x==1),w:=plogis(w0z1x1.noisy.odds)] + + ## df[,w_pred:=as.integer(w > 0.5)] + ## print(mean(df[z==0]$x == df[z==0]$w_pred)) + ## print(mean(df[z==1]$x == df[z==1]$w_pred)) + ## print(mean(df$w_pred == df$x)) + + odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(scale(df[x==1]$y))) + odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(scale(df[x==0]$y))) + + ## acc.x0 <- p.correct[df[,x==0]] + ## acc.x1 <- p.correct[df[,x==1]] + + df[x==0,w:=plogis(rlogis(.N,odds.x0))] + df[x==1,w:=plogis(rlogis(.N,odds.x1))] + + df[,w_pred := as.integer(w > 0.5)] + + print(mean(df[z==0]$x == df[z==0]$w_pred)) + print(mean(df[z==1]$x == df[z==1]$w_pred)) + print(mean(df$w_pred == df$x)) + print(mean(df[y>=0]$w_pred == df[y>=0]$x)) + print(mean(df[y<=0]$w_pred == df[y<=0]$x)) return(df) } parser <- arg_parser("Simulate data and fit corrected models") -parser <- add_argument(parser, "--N", default=5000, help="number of observations of w") -parser <- add_argument(parser, "--m", default=200, help="m the number of ground truth observations") -parser <- add_argument(parser, "--seed", default=432, help='seed for the rng') +parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") +aparser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") +parser <- add_argument(parser, "--seed", default=51, help='seed for the rng') parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') -parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.01) -parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) +parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.1) +parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.8) parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3) +parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3) +parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3) +parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3) +parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") +parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y*z*x") +parser <- add_argument(parser, "--y_bias", help='coefficient of y on the probability a classification is correct', default=-0.75) +parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z") args <- parse_args(parser) B0 <- 0 -Bxy <- 0.2 -Bgy <- -0.2 +Bxy <- args$Bxy +Bzy <- args$Bzy +Bzx <- args$Bzx -df <- simulate_data(args$N, args$m, B0, Bxy, Bgy, args$seed, args$y_explained_variance, args$prediction_accuracy, args$accuracy_imbalance_difference) +if(args$m < args$N){ -result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference) + df <- simulate_data(args$N, args$m, B0, Bxy, Bzx, Bzy, args$seed, args$y_explained_variance, args$prediction_accuracy, y_bias=args$y_bias) -outline <- run_simulation_depvar(df=df, result) + ## df.pc <- df[,.(x,y,z,w_pred,w)] + ## # df.pc <- df.pc[,err:=x-w_pred] + ## pc.df <- pc(suffStat=list(C=cor(df.pc),n=nrow(df.pc)),indepTest=gaussCItest,labels=names(df.pc),alpha=0.05) + ## plot(pc.df) + result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=args$Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'y_bias'=args$y_bias,'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='') -outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) -if(file.exists(args$outfile)){ - logdata <- read_feather(args$outfile) - logdata <- rbind(logdata,as.data.table(outline)) -} else { - logdata <- as.data.table(outline) -} + outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula)) + + + outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) + if(file.exists(args$outfile)){ + logdata <- read_feather(args$outfile) + logdata <- rbind(logdata,as.data.table(outline), fill=TRUE) + } else { + logdata <- as.data.table(outline) + } -print(outline) -write_feather(logdata, args$outfile) -unlock(outfile_lock) + print(outline) + write_feather(logdata, args$outfile) + unlock(outfile_lock) +}