X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/5c931a7198452ff3ce0ace5b1f68046bfb33d352..HEAD:/simulations/measerr_methods.R?ds=sidebyside diff --git a/simulations/measerr_methods.R b/simulations/measerr_methods.R index 63f8bc1..8f8eb5d 100644 --- a/simulations/measerr_methods.R +++ b/simulations/measerr_methods.R @@ -15,18 +15,38 @@ library(bbmle) ### ideal formulas for example 2 # test.fit.2 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x + z + y + y:x, binomial(link='logit'), x ~ z) - +likelihood.logistic <- function(model.params, outcome, model.matrix){ + ll <- vector(mode='numeric', length=length(outcome)) + ll[outcome == 1] <- plogis(model.params %*% t(model.matrix[outcome==1,]), log=TRUE) + ll[outcome == 0] <- plogis(model.params %*% t(model.matrix[outcome==0,]), log=TRUE, lower.tail=FALSE) + return(ll) +} ## outcome_formula <- y ~ x + z; proxy_formula <- w_pred ~ y + x + z + x:z + x:y + z:y -measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula, proxy_family=binomial(link='logit'),method='optim'){ +measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula, proxy_family=binomial(link='logit'),maxit=1e6, method='optim',optim_method='L-BFGS-B'){ + df.obs <- model.frame(outcome_formula, df) + proxy.model.matrix <- model.matrix(proxy_formula, df) + proxy.variable <- all.vars(proxy_formula)[1] + + df.proxy.obs <- model.frame(proxy_formula,df) + proxy.obs <- with(df.proxy.obs, eval(parse(text=proxy.variable))) + + response.var <- all.vars(outcome_formula)[1] + y.obs <- with(df.obs,eval(parse(text=response.var))) + outcome.model.matrix <- model.matrix(outcome_formula, df.obs) + + df.unobs <- df[is.na(df[[response.var]])] + df.unobs.y1 <- copy(df.unobs) + df.unobs.y1[[response.var]] <- 1 + df.unobs.y0 <- copy(df.unobs) + df.unobs.y0[[response.var]] <- 0 + + outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1) + proxy.model.matrix.y1 <- model.matrix(proxy_formula, df.unobs.y1) + proxy.model.matrix.y0 <- model.matrix(proxy_formula, df.unobs.y0) + proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable))) nll <- function(params){ - df.obs <- model.frame(outcome_formula, df) - proxy.variable <- all.vars(proxy_formula)[1] - proxy.model.matrix <- model.matrix(proxy_formula, df) - response.var <- all.vars(outcome_formula)[1] - y.obs <- with(df.obs,eval(parse(text=response.var))) - outcome.model.matrix <- model.matrix(outcome_formula, df.obs) param.idx <- 1 n.outcome.model.covars <- dim(outcome.model.matrix)[2] @@ -39,12 +59,9 @@ measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='lo ll.y.obs[y.obs==0] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==0,]),log=TRUE,lower.tail=FALSE) } - df.obs <- model.frame(proxy_formula,df) n.proxy.model.covars <- dim(proxy.model.matrix)[2] proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] - param.idx <- param.idx + n.proxy.model.covars - proxy.obs <- with(df.obs, eval(parse(text=proxy.variable))) if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1]) @@ -53,15 +70,8 @@ measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='lo } ll.obs <- sum(ll.y.obs + ll.w.obs) - - df.unobs <- df[is.na(df[[response.var]])] - df.unobs.y1 <- copy(df.unobs) - df.unobs.y1[[response.var]] <- 1 - df.unobs.y0 <- copy(df.unobs) - df.unobs.y0[[response.var]] <- 0 ## integrate out y - outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1) if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){ ll.y.unobs.1 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1]) @@ -70,10 +80,6 @@ measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='lo ll.y.unobs.0 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE,lower.tail=FALSE) } - proxy.model.matrix.y1 <- model.matrix(proxy_formula, df.unobs.y1) - proxy.model.matrix.y0 <- model.matrix(proxy_formula, df.unobs.y0) - proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable))) - if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ ll.w.unobs.1 <- vector(mode='numeric',length=dim(proxy.model.matrix.y1)[1]) ll.w.unobs.0 <- vector(mode='numeric',length=dim(proxy.model.matrix.y0)[1]) @@ -100,7 +106,7 @@ measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='lo names(start) <- params if(method=='optim'){ - fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6)) + fit <- optim(start, fn = nll, lower=lower, method=optim_method, hessian=TRUE, control=list(maxit=maxit)) } else { quoted.names <- gsub("[\\(\\)]",'',names(start)) print(quoted.names) @@ -109,13 +115,13 @@ measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='lo measerr_mle_nll <- eval(parse(text=text)) names(start) <- quoted.names names(lower) <- quoted.names - fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B') + fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=maxit),method=optim_method) } return(fit) } -measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){ +measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim', maxit=1e6, optim_method='L-BFGS-B'){ df.obs <- model.frame(outcome_formula, df) response.var <- all.vars(outcome_formula)[1] @@ -125,6 +131,31 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo proxy.model.matrix <- model.matrix(proxy_formula, df) y.obs <- with(df.obs,eval(parse(text=response.var))) + df.proxy.obs <- model.frame(proxy_formula,df) + proxy.obs <- with(df.proxy.obs, eval(parse(text=proxy.variable))) + n.proxy.model.covars <- dim(proxy.model.matrix)[2] + + df.truth.obs <- model.frame(truth_formula, df) + truth.obs <- with(df.truth.obs, eval(parse(text=truth.variable))) + truth.model.matrix <- model.matrix(truth_formula,df.truth.obs) + n.truth.model.covars <- dim(truth.model.matrix)[2] + + df.unobs <- df[is.na(eval(parse(text=truth.variable)))] + df.unobs.x1 <- copy(df.unobs) + df.unobs.x1[,truth.variable] <- 1 + df.unobs.x0 <- copy(df.unobs) + df.unobs.x0[,truth.variable] <- 0 + outcome.unobs <- with(df.unobs, eval(parse(text=response.var))) + + outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0) + outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1) + + proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.unobs.x0) + proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.unobs.x1) + proxy.unobs <- df.unobs[[proxy.variable]] + + truth.model.matrix.unobs <- model.matrix(truth_formula, df.unobs.x0) + measerr_mle_nll <- function(params){ param.idx <- 1 n.outcome.model.covars <- dim(outcome.model.matrix)[2] @@ -137,82 +168,48 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo param.idx <- param.idx + 1 # outcome_formula likelihood using linear regression ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE) - } - - df.obs <- model.frame(proxy_formula,df) - n.proxy.model.covars <- dim(proxy.model.matrix)[2] + } else if( (outcome_family$family == "binomial") & (outcome_family$link == "logit") ) + ll.y.obs <- likelihood.logistic(outcome.params, y.obs, outcome.model.matrix) + + proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] param.idx <- param.idx + n.proxy.model.covars - proxy.obs <- with(df.obs, eval(parse(text=proxy.variable))) - - if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ - ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1]) - # proxy_formula likelihood using logistic regression - ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE) - ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE) - } + if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')) + ll.w.obs <- likelihood.logistic(proxy.params, proxy.obs, proxy.model.matrix) - df.obs <- model.frame(truth_formula, df) - - truth.obs <- with(df.obs, eval(parse(text=truth.variable))) - truth.model.matrix <- model.matrix(truth_formula,df) - n.truth.model.covars <- dim(truth.model.matrix)[2] - truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)] - if( (truth_family$family=="binomial") & (truth_family$link=='logit')){ - ll.x.obs <- vector(mode='numeric',length=dim(truth.model.matrix)[1]) - - # truth_formula likelihood using logistic regression - ll.x.obs[truth.obs==1] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==1,]),log=TRUE) - ll.x.obs[truth.obs==0] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==0,]),log=TRUE, lower.tail=FALSE) - } + if( (truth_family$family=="binomial") & (truth_family$link=='logit')) + ll.x.obs <- likelihood.logistic(truth.params, truth.obs, truth.model.matrix) - # add the three likelihoods + # add the three likelihoods ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs) ## likelihood for the predicted data ## integrate out the "truth" variable. if(truth_family$family=='binomial'){ - df.unobs <- df[is.na(eval(parse(text=truth.variable)))] - df.unobs.x1 <- copy(df.unobs) - df.unobs.x1[,'x'] <- 1 - df.unobs.x0 <- copy(df.unobs) - df.unobs.x0[,'x'] <- 0 - outcome.unobs <- with(df.unobs, eval(parse(text=response.var))) - - outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0) - outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1) if(outcome_family$family=="gaussian"){ - # likelihood of outcome ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE) ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE) + } else if( (outcome_family$family == "binomial") & (outcome_family$link == "logit") ){ + ll.y.x1 <- likelihood.logistic(outcome.params, outcome.unobs, outcome.model.matrix.x1) + ll.y.x0 <- likelihood.logistic(outcome.params, outcome.unobs, outcome.model.matrix.x0) } if( (proxy_family$family=='binomial') & (proxy_family$link=='logit')){ - proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.unobs.x0) - proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.unobs.x1) - proxy.unobs <- df.unobs[[proxy.variable]] - ll.w.x0 <- vector(mode='numeric', length=dim(df.unobs)[1]) - ll.w.x1 <- vector(mode='numeric', length=dim(df.unobs)[1]) - - # likelihood of proxy - ll.w.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==1,]), log=TRUE) - ll.w.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==1,]), log=TRUE) + ll.w.x0 <- likelihood.logistic(proxy.params, proxy.unobs, proxy.model.matrix.x0) + ll.w.x1 <- likelihood.logistic(proxy.params, proxy.unobs, proxy.model.matrix.x1) - ll.w.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE) - ll.w.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE) } if(truth_family$link=='logit'){ - truth.model.matrix <- model.matrix(truth_formula, df.unobs.x0) # likelihood of truth - ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE) - ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE, lower.tail=FALSE) + ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE) + ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE, lower.tail=FALSE) } } @@ -243,7 +240,7 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo names(start) <- params if(method=='optim'){ - fit <- optim(start, fn = measerr_mle_nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6)) + fit <- optim(start, fn = measerr_mle_nll, lower=lower, method=optim_method, hessian=TRUE, control=list(maxit=maxit)) } else { # method='mle2' quoted.names <- gsub("[\\(\\)]",'',names(start)) @@ -253,7 +250,7 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo measerr_mle_nll_mle <- eval(parse(text=text)) names(start) <- quoted.names names(lower) <- quoted.names - fit <- mle2(minuslogl=measerr_mle_nll_mle, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B') + fit <- mle2(minuslogl=measerr_mle_nll_mle, start=start, lower=lower, parnames=params,control=list(maxit=maxit),method=optim_method) } return(fit) @@ -431,7 +428,7 @@ measerr_irr_mle <- function(df, outcome_formula, outcome_family=gaussian(), code ## Experimental, and does not work. measerr_irr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), coder_formulas=list(y.obs.0~y+w_pred+y.obs.1,y.obs.1~y+w_pred+y.obs.0), proxy_formula=w_pred~y, proxy_family=binomial(link='logit'),method='optim'){ integrate.grid <- expand.grid(replicate(1 + length(coder_formulas), c(0,1), simplify=FALSE)) - print(integrate.grid) +# print(integrate.grid) outcome.model.matrix <- model.matrix(outcome_formula, df) @@ -527,8 +524,8 @@ measerr_irr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link ## likelihood of observed data target <- -1 * sum(lls) - print(target) - print(params) +# print(target) +# print(params) return(target) } }