X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/5c931a7198452ff3ce0ace5b1f68046bfb33d352..acb119418aef75dfa1e882f975ae0638e7736a07:/simulations/02_indep_differential.R diff --git a/simulations/02_indep_differential.R b/simulations/02_indep_differential.R index 6e2732f..9c33be7 100644 --- a/simulations/02_indep_differential.R +++ b/simulations/02_indep_differential.R @@ -31,11 +31,11 @@ source("simulation_base.R") ## one way to do it is by adding correlation to x.obs and y that isn't in w. ## in other words, the model is missing an important feature of x.obs that's related to y. -simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, y_bias=-0.8,z_bias=0,accuracy_imbalance_difference=0.3){ +simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, y_bias=-0.8,z_bias=0,Px=0.5,accuracy_imbalance_difference=0.3){ set.seed(seed) # make w and y dependent z <- rnorm(N,sd=0.5) - x <- rbinom(N, 1, plogis(Bzx * z)) + x <- rbinom(N, 1, plogis(Bzx * z + qlogis(Px))) y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bzy*z,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance) y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon)) @@ -104,9 +104,10 @@ simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0. ## print(mean(df[z==1]$x == df[z==1]$w_pred)) ## print(mean(df$w_pred == df$x)) + resids <- resid(lm(y~x + z)) - odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(resids[x==1])) + z_bias * qlogis(pnorm(z,sd(z))) - odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(resids[x==0])) + z_bias * qlogis(pnorm(z,sd(z))) + odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(resids[x==1])) + z_bias * qlogis(pnorm(z[x==1],sd(z))) + odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(resids[x==0])) + z_bias * qlogis(pnorm(z[x==0],sd(z))) ## acc.x0 <- p.correct[df[,x==0]] ## acc.x1 <- p.correct[df[,x==1]] @@ -139,10 +140,12 @@ parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy va parser <- add_argument(parser, "--y_bias", help='coefficient of y on the probability a classification is correct', default=-0.5) parser <- add_argument(parser, "--z_bias", help='coefficient of z on the probability a classification is correct', default=0) parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z") - +parser <- add_argument(parser, "--Px", help='base rate of x', default=0.5) +parser <- add_argument(parser, "--confint_method", help='method for approximating confidence intervals', default='quad') args <- parse_args(parser) B0 <- 0 +Px <- args$Px Bxy <- args$Bxy Bzy <- args$Bzy Bzx <- args$Bzx @@ -156,9 +159,9 @@ if(args$m < args$N){ ## pc.df <- pc(suffStat=list(C=cor(df.pc),n=nrow(df.pc)),indepTest=gaussCItest,labels=names(df.pc),alpha=0.05) ## plot(pc.df) - result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=args$Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'y_bias'=args$y_bias,'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='') + result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, 'Bzx'=args$Bzx, 'Bzy'=Bzy, 'Px'=Px, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'y_bias'=args$y_bias,'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, confint_method=args$confint_method, error='') - outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula)) + outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula),confint_method=args$confint_method) outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)