X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/6057688060b5bf2a94f2b96b65b275a91991c0f3..e41d11afb9a80180feff844666e3ee463d20a7cd:/simulations/example_1.R diff --git a/simulations/example_1.R b/simulations/example_1.R new file mode 100644 index 0000000..40cdd85 --- /dev/null +++ b/simulations/example_1.R @@ -0,0 +1,203 @@ +### EXAMPLE 2: demonstrates how measurement error can lead to a type sign error in a covariate +### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign. +### Even when you include the proxy variable in the regression. +### But with some ground truth and multiple imputation, you can fix it. + +library(argparser) +library(mecor) +library(ggplot2) +library(data.table) +library(filelock) +library(arrow) +library(Amelia) +library(Zelig) +library(predictionError) + +source("simulation_base.R") + +## SETUP: +### we want to estimate x -> y; x is MAR +### we have x -> k; k -> w; x -> w is used to predict x via the model w. +### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments +### The labels x are binary, but the model provides a continuous predictor + +### simulation: +#### how much power do we get from the model in the first place? (sweeping N and m) +#### +logistic <- function(x) {1/(1+exp(-1*x))} + +simulate_latent_cocause <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){ + set.seed(seed) + + ## the true value of x + + g <- rbinom(N, 1, 0.5) + xprime <- Bgx * g + rnorm(N,0,1) + + k <- Bkx*xprime + rnorm(N,0,3) + + x <- as.integer(logistic(scale(xprime)) > 0.5) + + y <- Bxy * x + Bgy * g + rnorm(N, 0, 2) + B0 + df <- data.table(x=x,k=k,y=y,g=g) + + if( m < N){ + df <- df[sample(nrow(df), m), x.obs := x] + } else { + df <- df[, x.obs := x] + } + + w.model <- glm(x ~ k,df, family=binomial(link='logit')) + w <- predict(w.model,data.frame(k=k)) + rnorm(N,0,1) + ## y = B0 + B1x + e + + df[,':='(w=w, w_pred = as.integer(w>0.5))] + return(df) +} + + +parser <- arg_parser("Simulate data and fit corrected models") +parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") +parser <- add_argument(parser, "--m", default=100, help="m the number of ground truth observations") +parser <- add_argument(parser, "--seed", default=432, help='seed for the rng') +parser <- add_argument(parser, "--outfile", help='output file', default='example_2_B.feather') +args <- parse_args(parser) + + +B0 <- 0 +Bxy <- 0.2 +Bgy <- 0 +Bkx <- 3.2 +Bgx <- 0 + +df <- simulate_latent_cocause(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed) + +outline <- run_simulation(df + ,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=0, 'Bkx'=Bkx, 'Bgx'=0, 'seed'=args$seed)) + +outfile_lock <- lock(paste0(args$outfile, '_lock')) +if(file.exists(args$outfile)){ + logdata <- read_feather(args$outfile) + logdata <- rbind(logdata,as.data.table(outline)) +} else { + logdata <- as.data.table(outline) +} + +print(outline) +write_feather(logdata, args$outfile) +unlock(outfile_lock) + +## for(N in Ns){ +## print(N) +## for(m in ms){ +## if(N>m){ +## for(seed in seeds){ +## rows <- append(rows, list(run_simulation(N, m, B0, Bxy, Bkx, seed))) +## } +## } +## } +## } + + +## run_simulation <- function(N, m, B0, Bxy, Bkx, seed){ +## result <- list() +## df <- simulate_latent_cocause(N, m, B0, Bxy, Bkx, seed) + +## result <- append(result, list(N=N, +## m=m, +## B0=B0, +## Bxy=Bxy, +## Bkx=Bkx, +## seed=seed)) + +## (correlation <- cor(df$w,df$x,method='spearman')) +## result <- append(result, list(correlation=correlation)) + +## (accuracy <- mean(df$x == df$w_pred)) + +## result <- append(result, list(accuracy=accuracy)) + +## (model.true <- lm(y ~ x, data=df)) + +## (cor(resid(model.true),df$w)) + +## true.ci.Bxy <- confint(model.true)['x',] + +## result <- append(result, list(Bxy.est.true=coef(model.true)['x'], +## Bxy.ci.upper.true = true.ci.Bxy[2], +## Bxy.ci.lower.true = true.ci.Bxy[1])) + +## (model.naive <- lm(y~w, data=df)) + +## (model.feasible <- lm(y~x.obs,data=df)) + +## feasible.ci.Bxy <- confint(model.feasible)['x.obs',] +## result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x.obs'], +## Bxy.ci.upper.feasible = feasible.ci.Bxy[2], +## Bxy.ci.lower.feasible = feasible.ci.Bxy[1])) + + +## naive.ci.Bxy <- confint(model.naive)['w',] + +## result <- append(result, list(Bxy.est.naive=coef(model.naive)['w'], +## Bxy.ci.upper.naive = naive.ci.Bxy[2], +## Bxy.ci.lower.naive = naive.ci.Bxy[1])) + + +## ## multiple imputation when k is observed + +## amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w_pred'), noms=c("x.obs"),lgstc=c('w')) +## mod.amelia.k <- zelig(y~x.obs, model='ls', data=amelia.out.k$imputations, cite=FALSE) +## (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE)) + +## est.x.mi <- coefse['x.obs','Estimate'] +## est.x.se <- coefse['x.obs','Std.Error'] +## result <- append(result, +## list(Bxy.est.amelia.full = est.x.mi, +## Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se, +## Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se +## )) + + +## ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model. +## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","k","w_pred"),noms=c("x.obs"),lgstc=c('w')) +## mod.amelia.nok <- zelig(y~x.obs, model='ls', data=amelia.out.nok$imputations, cite=FALSE) +## (coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE)) + +## est.x.mi <- coefse['x.obs','Estimate'] +## est.x.se <- coefse['x.obs','Std.Error'] +## result <- append(result, +## list(Bxy.est.amelia.nok = est.x.mi, +## Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se, +## Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se +## )) + +## p <- v <- train <- rep(0,N) +## M <- m +## p[(M+1):(N)] <- 1 +## v[1:(M)] <- 1 +## df <- df[order(x.obs)] +## y <- df[,y] +## x <- df[,x.obs] +## w <- df[,w] +## (gmm.res <- predicted_covariates(y, x, g, w, v, train, p, max_iter=100, verbose=FALSE)) + +## result <- append(result, +## list(Bxy.est.gmm = gmm.res$beta[1,1], +## Bxy.ci.upper.gmm = gmm.res$confint[1,2], +## Bxy.ci.lower.gmm = gmm.res$confint[1,1])) + +## mod.calibrated.mle <- mecor(y ~ MeasError(w, reference = x.obs), df, B=400, method='efficient') + +## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',]) + +## result <- append(result, list( +## Bxy.est.mecor = mecor.ci['Estimate'], +## Bxy.upper.mecor = mecor.ci['UCI'], +## Bxy.lower.mecor = mecor.ci['LCI']) +## ) + + +## return(result) +## } +