X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/6057688060b5bf2a94f2b96b65b275a91991c0f3..e41d11afb9a80180feff844666e3ee463d20a7cd:/simulations/example_2.R diff --git a/simulations/example_2.R b/simulations/example_2.R new file mode 100644 index 0000000..2ec23f7 --- /dev/null +++ b/simulations/example_2.R @@ -0,0 +1,87 @@ +### EXAMPLE 2: demonstrates how measurement error can lead to a type sign error in a covariate +### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign. +### Even when you include the proxy variable in the regression. +### But with some ground truth and multiple imputation, you can fix it. + +library(argparser) +library(mecor) +library(ggplot2) +library(data.table) +library(filelock) +library(arrow) +library(Amelia) +library(Zelig) +library(predictionError) +options(amelia.parallel="no", + amelia.ncpus=1) + +## SETUP: +### we want to estimate x -> y; x is MAR +### we have x -> k; k -> w; x -> w is used to predict x via the model w. +### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments +### The labels x are binary, but the model provides a continuous predictor + +### simulation: +#### how much power do we get from the model in the first place? (sweeping N and m) +#### +source("simulation_base.R") + +simulate_latent_cocause <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){ + set.seed(seed) + + ## the true value of x + + g <- rbinom(N, 1, 0.5) + k <- rnorm(N, 0, 1) + xprime <- Bkx*k + Bgx * g + rnorm(N,0,1) + xvec <- scale(xprime) + + y <- Bxy * xvec + Bgy * g + rnorm(N, 0, 1) + B0 + + df <- data.table(x=xvec,k=k,y=y,g=g) + names(df) <- c('x','k','y','g') + if( m < N){ + df <- df[sample(nrow(df), m), x.obs := x] + } else { + df <- df[, x.obs := x] + } + + w.model <- lm(x ~ k,df) + w <- predict(w.model,data.frame(k=k)) + w <- logistic(w + rnorm(N,0,sd(w)*0.1)) + ## y = B0 + B1x + e + + df[,':='(w=w, w_pred = as.integer(w>0.5))] + return(df) +} + + +parser <- arg_parser("Simulate data and fit corrected models") +parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") +parser <- add_argument(parser, "--m", default=200, help="m the number of ground truth observations") +parser <- add_argument(parser, "--seed", default=4321, help='seed for the rng') +parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') +args <- parse_args(parser) + +Ns <- c(1000, 10000, 1e6) +ms <- c(100, 250, 500, 1000) +B0 <- 0 +Bxy <- 0.2 +Bgy <- -0.2 +Bkx <- 2 +Bgx <- 3 + +outline <- run_simulation(simulate_latent_cocause(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed) + ,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=args$seed)) + +outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) +if(file.exists(args$outfile)){ + logdata <- read_feather(args$outfile) + logdata <- rbind(logdata,as.data.table(outline)) +} else { + logdata <- as.data.table(outline) +} + +print(outline) +write_feather(logdata, args$outfile) +unlock(outfile_lock)