X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/6057688060b5bf2a94f2b96b65b275a91991c0f3..e41d11afb9a80180feff844666e3ee463d20a7cd:/simulations/example_3.R diff --git a/simulations/example_3.R b/simulations/example_3.R new file mode 100644 index 0000000..389dba1 --- /dev/null +++ b/simulations/example_3.R @@ -0,0 +1,144 @@ +### EXAMPLE 2_b: demonstrates how measurement error can lead to a type sign error in a covariate +### What kind of data invalidates fong + tyler? +### This is the same as example 2, only instead of x->k we have k->x. +### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign. +### Even when you include the proxy variable in the regression. +### But with some ground truth and multiple imputation, you can fix it. + +library(argparser) +library(mecor) +library(ggplot2) +library(data.table) +library(filelock) +library(arrow) +library(Amelia) +library(Zelig) +library(predictionError) +options(amelia.parallel="no", + amelia.ncpus=1) +setDTthreads(40) + +source("simulation_base.R") + +## SETUP: +### we want to estimate x -> y; x is MAR +### we have x -> k; k -> w; x -> w is used to predict x via the model w. +### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments +### The labels x are binary, but the model provides a continuous predictor + +### simulation: +#### how much power do we get from the model in the first place? (sweeping N and m) +#### + +## one way to do it is by adding correlation to x.obs and y that isn't in w. +## in other words, the model is missing an important feature of x.obs that's related to y. +simulate_latent_cocause <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){ + set.seed(seed) + + ## the true value of x + + g <- rbinom(N, 1, 0.5) + + # make w and y dependent + u <- rnorm(N,0,Bxy) + + xprime <- Bgx * g + rnorm(N,0,1) + + k <- Bkx*xprime + rnorm(N,0,1.5) + 1.1*Bkx*u + + x <- as.integer(logistic(scale(xprime)) > 0.5) + + y <- Bxy * x + Bgy * g + rnorm(N, 0, 1) + B0 + u + + df <- data.table(x=x,k=k,y=y,g=g) + + w.model <- glm(x ~ k,df, family=binomial(link='logit')) + + if( m < N){ + df <- df[sample(nrow(df), m), x.obs := x] + } else { + df <- df[, x.obs := x] + } + + df[, x.obs := x.obs] + + w <- predict(w.model, df) + rnorm(N, 0, 1) + ## y = B0 + B1x + e + + df[,':='(w=w, w_pred = as.integer(w>0.5),u=u)] + return(df) +} + +## simulate_latent_cocause_2 <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){ +## set.seed(seed) + +## ## the true value of x + +## g <- rbinom(N, 1, 0.5) + +## # make w and y dependent +## u <- rnorm(N,0,5) + +## xprime <- Bgx * g + rnorm(N,0,1) + +## k <- Bkx*xprime + rnorm(N,0,3) + +## x <- as.integer(logistic(scale(xprime+0.3)) > 0.5) + +## y <- Bxy * x + Bgy * g + rnorm(N, 0, 1) + B0 + u + +## df <- data.table(x=x,k=k,y=y,g=g) + +## w.model <- glm(x ~ k, df, family=binomial(link='logit')) + +## if( m < N){ +## df <- df[sample(nrow(df), m), x.obs := x] +## } else { +## df <- df[, x.obs := x] +## } + +## w <- predict(w.model,data.frame(k=k)) + u +## ## y = B0 + B1x + e + +## df[,':='(w=w, w_pred = as.integer(w>0.5),u=u)] +## return(df) +## } + + +schennach <- function(df){ + + fwx <- glm(x.obs~w, df, family=binomial(link='logit')) + df[,xstar_pred := predict(fwx, df)] + gxt <- lm(y ~ xstar_pred+g, df) + +} + + +parser <- arg_parser("Simulate data and fit corrected models") +parser <- add_argument(parser, "--N", default=5000, help="number of observations of w") +parser <- add_argument(parser, "--m", default=200, help="m the number of ground truth observations") +parser <- add_argument(parser, "--seed", default=432, help='seed for the rng') +parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') +args <- parse_args(parser) + +B0 <- 0 +Bxy <- 0.2 +Bgy <- 0 +Bkx <- 2 +Bgx <- 0 + + +outline <- run_simulation(simulate_latent_cocause(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed) + ,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=args$seed)) + +outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) +if(file.exists(args$outfile)){ + logdata <- read_feather(args$outfile) + logdata <- rbind(logdata,as.data.table(outline)) +} else { + logdata <- as.data.table(outline) +} + +print(outline) +write_feather(logdata, args$outfile) +unlock(outfile_lock)