X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/979dc14b6861ae31f00d56392fd5b8cf69f17333..82fe7b0f482a71c95e8ae99f7e6d37b79357506a:/simulations/06_irr_dv.R?ds=sidebyside diff --git a/simulations/06_irr_dv.R b/simulations/06_irr_dv.R index 0dd13b6..dd8fa72 100644 --- a/simulations/06_irr_dv.R +++ b/simulations/06_irr_dv.R @@ -31,14 +31,13 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, co df <- data.table(x=x,y=y,ystar=ystar,z=z) - if(m < N){ - df <- df[sample(nrow(df), m), y.obs := y] - } else { - df <- df[, y.obs := y] - } + df <- df[sample(nrow(df), m), y.obs := y] - df[ (!is.na(y.obs)) ,y.obs.0 := abs(y.obs - rbinom(.N, 1, 1-coder_accuracy))] - df[ (!is.na(y.obs)) ,y.obs.1 := abs(y.obs - rbinom(.N, 1, 1-coder_accuracy))] + coder.0.correct <- rbinom(m, 1, coder_accuracy) + coder.1.correct <- rbinom(m, 1, coder_accuracy) + + df[!is.na(y.obs),y.obs.0 := as.numeric((.SD$y.obs & coder.0.correct) | (!.SD$y.obs & !coder.0.correct))] + df[!is.na(y.obs),y.obs.1 := as.numeric((.SD$y.obs & coder.1.correct) | (!.SD$y.obs & !coder.1.correct))] odds.y1 <- qlogis(prediction_accuracy) odds.y0 <- qlogis(prediction_accuracy,lower.tail=F) @@ -48,6 +47,9 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, co df[,w_pred := as.integer(w > 0.5)] + print(mean(df$y == df$y.obs.0,na.rm=T)) + print(mean(df$y == df$y.obs.1,na.rm=T)) + print(mean(df[x==0]$y == df[x==0]$w_pred)) print(mean(df[x==1]$y == df[x==1]$w_pred)) print(mean(df$w_pred == df$y)) @@ -55,18 +57,18 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, co } parser <- arg_parser("Simulate data and fit corrected models") -parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") +parser <- add_argument(parser, "--N", default=5000, help="number of observations of w") parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") -parser <- add_argument(parser, "--seed", default=17, help='seed for the rng') +parser <- add_argument(parser, "--seed", default=16, help='seed for the rng') parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') -parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005) -parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.72) +parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.1) +parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) ## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75) ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75) parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3) parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3) parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") -parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y") +parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y+y.obs.1+y.obs.0") parser <- add_argument(parser, "--coder_accuracy", help='How accurate are the coders?', default=0.8) args <- parse_args(parser) @@ -76,24 +78,24 @@ Bxy <- args$Bxy Bzy <- args$Bzy -if(args$m < args$N){ - df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$coder_accuracy) - -# result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) - result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) +df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$coder_accuracy) - outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula)) + # result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) +result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) - outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) +outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula)) - if(file.exists(args$outfile)){ - logdata <- read_feather(args$outfile) - logdata <- rbind(logdata,as.data.table(outline),fill=TRUE) - } else { - logdata <- as.data.table(outline) - } +outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) - print(outline) - write_feather(logdata, args$outfile) - unlock(outfile_lock) +if(file.exists(args$outfile)){ + logdata <- read_feather(args$outfile) + logdata <- rbind(logdata,as.data.table(outline),fill=TRUE) +} else { + logdata <- as.data.table(outline) } + +print(outline) +write_feather(logdata, args$outfile) +unlock(outfile_lock) + +warnings()