X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/979dc14b6861ae31f00d56392fd5b8cf69f17333..8ac33c14d7e7874bf283aa9c252fa06566dc8b15:/simulations/plot_irr_dv_example.R diff --git a/simulations/plot_irr_dv_example.R b/simulations/plot_irr_dv_example.R index f5e2c41..46450d5 100644 --- a/simulations/plot_irr_dv_example.R +++ b/simulations/plot_irr_dv_example.R @@ -17,6 +17,10 @@ build_plot_dataset <- function(df){ z.true <- summarize.estimator(df, 'true','z') + x.naive <- summarize.estimator(df, 'naive','x') + + z.naive <- summarize.estimator(df, 'naive','z') + x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x') z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z') @@ -34,8 +38,14 @@ build_plot_dataset <- function(df){ z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z') + z.loco.amelia <- summarize.estimator(df, 'amelia.full', 'z') + x.loco.amelia <- summarize.estimator(df, 'amelia.full', 'x') + + z.loco.zhang <- summarize.estimator(df, 'zhang', 'z') + x.loco.zhang <- summarize.estimator(df, 'zhang', 'x') + accuracy <- df[,mean(accuracy)] - plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, z.loco.mle, x.loco.mle),use.names=T) + plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.naive,z.naive,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, z.loco.mle, x.loco.mle, x.loco.amelia, z.loco.amelia, z.loco.zhang, x.loco.zhang),use.names=T) plot.df[,accuracy := accuracy] plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)] return(plot.df)