X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/979dc14b6861ae31f00d56392fd5b8cf69f17333..d0c5766bdf867a81a2477d2cac1d40812110af90:/simulations/03_depvar.R?ds=inline diff --git a/simulations/03_depvar.R b/simulations/03_depvar.R index a2d88e0..79a516f 100644 --- a/simulations/03_depvar.R +++ b/simulations/03_depvar.R @@ -31,7 +31,8 @@ source("simulation_base.R") ## one way to do it is by adding correlation to x.obs and y that isn't in w. ## in other words, the model is missing an important feature of x.obs that's related to y. -simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73){ +simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, log.likelihood.gain = 0.1){ + set.seed(seed) set.seed(seed) # make w and y dependent @@ -41,8 +42,6 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73){ ystar <- Bzy * z + Bxy * x + B0 y <- rbinom(N,1,plogis(ystar)) - # glm(y ~ x + z, family="binomial") - df <- data.table(x=x,y=y,ystar=ystar,z=z) if(m < N){ @@ -66,7 +65,7 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73){ } parser <- arg_parser("Simulate data and fit corrected models") -parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") +parser <- add_argument(parser, "--N", default=10000, help="number of observations of w") parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") parser <- add_argument(parser, "--seed", default=17, help='seed for the rng') parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') @@ -74,8 +73,8 @@ parser <- add_argument(parser, "--y_explained_variance", help='what proportion o parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.72) ## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75) ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75) -parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3) -parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3) +parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.01) +parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.01) parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y")