X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/b52b4f7daaba8a877b041ddb24c8f36b466ddc5b..82fe7b0f482a71c95e8ae99f7e6d37b79357506a:/simulations/irr_dv_simulation_base.R diff --git a/simulations/irr_dv_simulation_base.R b/simulations/irr_dv_simulation_base.R index 059473c..3263322 100644 --- a/simulations/irr_dv_simulation_base.R +++ b/simulations/irr_dv_simulation_base.R @@ -4,23 +4,47 @@ options(amelia.parallel="no", amelia.ncpus=1) library(Amelia) -source("measerr_methods.R") ## for my more generic function. +source("pl_methods.R") +source("measerr_methods_2.R") ## for my more generic function. -run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, rater_formula = y.obs ~ x, proxy_formula = w_pred ~ y){ - - accuracy <- df[,mean(w_pred==y)] +run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, coder_formulas = list(y.obs.0 ~ 1, y.obs.1 ~ 1), proxy_formula = w_pred ~ y.obs.1+y.obs.0+y){ + (accuracy <- df[,mean(w_pred==y)]) result <- append(result, list(accuracy=accuracy)) + (error.cor.z <- cor(df$x, df$w_pred - df$z)) + (error.cor.x <- cor(df$x, df$w_pred - df$y)) + (error.cor.y <- cor(df$y, df$y - df$w_pred)) + result <- append(result, list(error.cor.x = error.cor.x, + error.cor.z = error.cor.z, + error.cor.y = error.cor.y)) + + model.null <- glm(y~1, data=df,family=binomial(link='logit')) + (model.true <- glm(y ~ x + z, data=df,family=binomial(link='logit'))) + (lik.ratio <- exp(logLik(model.true) - logLik(model.null))) - (model.true <- glm(y ~ x + z, data=df, family=binomial(link='logit'))) true.ci.Bxy <- confint(model.true)['x',] true.ci.Bzy <- confint(model.true)['z',] + + result <- append(result, list(lik.ratio=lik.ratio)) + result <- append(result, list(Bxy.est.true=coef(model.true)['x'], Bzy.est.true=coef(model.true)['z'], Bxy.ci.upper.true = true.ci.Bxy[2], Bxy.ci.lower.true = true.ci.Bxy[1], Bzy.ci.upper.true = true.ci.Bzy[2], Bzy.ci.lower.true = true.ci.Bzy[1])) + + (model.naive <- lm(y~w_pred+z, data=df)) + + naive.ci.Bxy <- confint(model.naive)['w_pred',] + naive.ci.Bzy <- confint(model.naive)['z',] + + result <- append(result, list(Bxy.est.naive=coef(model.naive)['w_pred'], + Bzy.est.naive=coef(model.naive)['z'], + Bxy.ci.upper.naive = naive.ci.Bxy[2], + Bxy.ci.lower.naive = naive.ci.Bxy[1], + Bzy.ci.upper.naive = naive.ci.Bzy[2], + Bzy.ci.lower.naive = naive.ci.Bzy[1])) @@ -37,20 +61,20 @@ run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, rater Bzy.ci.lower.loa0.feasible = loa0.ci.Bzy[1])) - df.loa0.mle <- copy(df) - df.loa0.mle[,y:=y.obs.0] - loa0.mle <- measerr_mle_dv(df.loa0.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula) - fisher.info <- solve(loa0.mle$hessian) - coef <- loa0.mle$par - ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 - ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 + ## df.loa0.mle <- copy(df) + ## df.loa0.mle[,y:=y.obs.0] + ## loa0.mle <- measerr_mle_dv(df.loa0.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula) + ## fisher.info <- solve(loa0.mle$hessian) + ## coef <- loa0.mle$par + ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 + ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 - result <- append(result, list(Bxy.est.loa0.mle=coef['x'], - Bzy.est.loa0.mle=coef['z'], - Bxy.ci.upper.loa0.mle = ci.upper['x'], - Bxy.ci.lower.loa0.mle = ci.lower['x'], - Bzy.ci.upper.loa0.mle = ci.upper['z'], - Bzy.ci.lower.loa0.mle = ci.upper['z'])) + ## result <- append(result, list(Bxy.est.loa0.mle=coef['x'], + ## Bzy.est.loa0.mle=coef['z'], + ## Bxy.ci.upper.loa0.mle = ci.upper['x'], + ## Bxy.ci.lower.loa0.mle = ci.lower['x'], + ## Bzy.ci.upper.loa0.mle = ci.upper['z'], + ## Bzy.ci.lower.loa0.mle = ci.upper['z'])) loco.feasible <- glm(y.obs.0 ~ x + z, data = df[(!is.na(y.obs.0)) & (y.obs.1 == y.obs.0)], family=binomial(link='logit')) @@ -64,29 +88,110 @@ run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, rater Bzy.ci.upper.loco.feasible = loco.feasible.ci.Bzy[2], Bzy.ci.lower.loco.feasible = loco.feasible.ci.Bzy[1])) + + ## df.double.proxy <- copy(df) + ## df.double.proxy <- df.double.proxy[,y.obs:=NA] + ## df.double.proxy <- df.double.proxy[,y:=NA] + + ## double.proxy.mle <- measerr_irr_mle_dv(df.double.proxy, outcome_formula=y~x+z, outcome_family=binomial(link='logit'), coder_formulas=list(y.obs.0 ~ y), proxy_formula=w_pred ~ y.obs.0 + y, proxy_family=binomial(link='logit')) + ## print(double.proxy.mle$hessian) + ## fisher.info <- solve(double.proxy.mle$hessian) + ## coef <- double.proxy.mle$par + ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 + ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 + + ## result <- append(result, list(Bxy.est.double.proxy=coef['x'], + ## Bzy.est.double.proxy=coef['z'], + ## Bxy.ci.upper.double.proxy = ci.upper['x'], + ## Bxy.ci.lower.double.proxy = ci.lower['x'], + ## Bzy.ci.upper.double.proxy = ci.upper['z'], + ## Bzy.ci.lower.double.proxy = ci.lower['z'])) + - df.loco.mle <- copy(df) - df.loco.mle[,y.obs:=NA] - df.loco.mle[(y.obs.0)==(y.obs.1),y.obs:=y.obs.0] - df.loco.mle[,y.true:=y] - df.loco.mle[,y:=y.obs] - print(df.loco.mle[!is.na(y.obs.1),mean(y.true==y,na.rm=TRUE)]) - loco.mle <- measerr_mle_dv(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula) - fisher.info <- solve(loco.mle$hessian) - coef <- loco.mle$par + df.triple.proxy <- copy(df) + df.triple.proxy <- df.triple.proxy[,y.obs:=NA] + df.triple.proxy <- df.triple.proxy[,y:=NA] + + triple.proxy.mle <- measerr_irr_mle_dv(df.triple.proxy, outcome_formula=outcome_formula, outcome_family=binomial(link='logit'), coder_formulas=coder_formulas, proxy_formula=proxy_formula, proxy_family=binomial(link='logit')) + print(triple.proxy.mle$hessian) + fisher.info <- solve(triple.proxy.mle$hessian) + print(fisher.info) + coef <- triple.proxy.mle$par ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 - result <- append(result, list(Bxy.est.loco.mle=coef['x'], - Bzy.est.loco.mle=coef['z'], - Bxy.ci.upper.loco.mle = ci.upper['x'], - Bxy.ci.lower.loco.mle = ci.lower['x'], - Bzy.ci.upper.loco.mle = ci.upper['z'], - Bzy.ci.lower.loco.mle = ci.lower['z'])) + result <- append(result, list(Bxy.est.triple.proxy=coef['x'], + Bzy.est.triple.proxy=coef['z'], + Bxy.ci.upper.triple.proxy = ci.upper['x'], + Bxy.ci.lower.triple.proxy = ci.lower['x'], + Bzy.ci.upper.triple.proxy = ci.upper['z'], + Bzy.ci.lower.triple.proxy = ci.lower['z'])) + + ## df.loco.mle <- copy(df) + ## df.loco.mle[,y.obs:=NA] + ## df.loco.mle[(y.obs.0)==(y.obs.1),y.obs:=y.obs.0] + ## df.loco.mle[,y.true:=y] + ## df.loco.mle[,y:=y.obs] + ## print(df.loco.mle[!is.na(y.obs.1),mean(y.true==y,na.rm=TRUE)]) + ## loco.mle <- measerr_mle_dv(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula) + ## fisher.info <- solve(loco.mle$hessian) + ## coef <- loco.mle$par + ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 + ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 + + ## result <- append(result, list(Bxy.est.loco.mle=coef['x'], + ## Bzy.est.loco.mle=coef['z'], + ## Bxy.ci.upper.loco.mle = ci.upper['x'], + ## Bxy.ci.lower.loco.mle = ci.lower['x'], + ## Bzy.ci.upper.loco.mle = ci.upper['z'], + ## Bzy.ci.lower.loco.mle = ci.lower['z'])) + + - print(rater_formula) - print(proxy_formula) + ## my implementatoin of liklihood based correction + mod.zhang <- zhang.mle.dv(df.loco.mle) + coef <- coef(mod.zhang) + ci <- confint(mod.zhang,method='quad') + + result <- append(result, + list(Bxy.est.zhang = coef['Bxy'], + Bxy.ci.upper.zhang = ci['Bxy','97.5 %'], + Bxy.ci.lower.zhang = ci['Bxy','2.5 %'], + Bzy.est.zhang = coef['Bzy'], + Bzy.ci.upper.zhang = ci['Bzy','97.5 %'], + Bzy.ci.lower.zhang = ci['Bzy','2.5 %'])) + + + print(df.loco.mle) + + # amelia says use normal distribution for binary variables. + tryCatch({ + amelia.out.k <- amelia(df.loco.mle, m=200, p2s=0, idvars=c('y','ystar','w','y.obs.1','y.obs.0','y.true')) + mod.amelia.k <- zelig(y.obs~x+z, model='ls', data=amelia.out.k$imputations, cite=FALSE) + (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE)) + est.x.mi <- coefse['x','Estimate'] + est.x.se <- coefse['x','Std.Error'] + result <- append(result, + list(Bxy.est.amelia.full = est.x.mi, + Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se, + Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se + )) + + est.z.mi <- coefse['z','Estimate'] + est.z.se <- coefse['z','Std.Error'] + + result <- append(result, + list(Bzy.est.amelia.full = est.z.mi, + Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se, + Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se + )) + + }, + error = function(e){ + message("An error occurred:\n",e) + result$error <- paste0(result$error,'\n', e) + }) ## mle.irr <- measerr_irr_mle( df, outcome_formula = outcome_formula, rater_formula = rater_formula, proxy_formula=proxy_formula, truth_formula=truth_formula) ## fisher.info <- solve(mle.irr$hessian)