X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/b8d2048cc5338fbd872b55029c3e5d01c739a397..bb6f5e4731c603b336afb1a900bc9083d1b175bf:/simulations/summarize_estimator.R?ds=inline diff --git a/simulations/summarize_estimator.R b/simulations/summarize_estimator.R index f416c5b..1e1341d 100644 --- a/simulations/summarize_estimator.R +++ b/simulations/summarize_estimator.R @@ -9,7 +9,7 @@ summarize.estimator <- function(df, suffix='naive', coefname='x'){ ) - grouping_vars <- c('N','m','B0', 'Bxy', 'Bzy', 'Bzx', 'Px', 'y_explained_variance', 'prediction_accuracy','outcome_formula','proxy_formula','truth_formula','z_bias','y_bias') + grouping_vars <- c('N','m','B0', 'Bxy', 'Bzy', 'Bzx', 'Px', 'Py','y_explained_variance', 'prediction_accuracy','outcome_formula','proxy_formula','truth_formula','z_bias','y_bias') grouping_vars <- grouping_vars[grouping_vars %in% names(df)] @@ -37,6 +37,8 @@ summarize.estimator <- function(df, suffix='naive', coefname='x'){ est.lower.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.025,na.rm=T), mean.ci.upper = mean(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],na.rm=T), mean.ci.lower = mean(.SD[[paste0('B',coefname,'y.ci.lower.',suffix)]],na.rm=T), + median.ci.upper = median(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],na.rm=T), + median.ci.lower = median(.SD[[paste0('B',coefname,'y.ci.lower.',suffix)]],na.rm=T), ci.upper.975 = quantile(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],0.975,na.rm=T), ci.upper.025 = quantile(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],0.025,na.rm=T), ci.lower.975 = quantile(.SD[[paste0('B',coefname,'y.ci.lower.',suffix)]],0.975,na.rm=T),