X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/bb6f5e4731c603b336afb1a900bc9083d1b175bf..HEAD:/simulations/summarize_estimator.R diff --git a/simulations/summarize_estimator.R b/simulations/summarize_estimator.R index 1e1341d..8ddeb7c 100644 --- a/simulations/summarize_estimator.R +++ b/simulations/summarize_estimator.R @@ -1,5 +1,6 @@ +library(ggdist) -summarize.estimator <- function(df, suffix='naive', coefname='x'){ +summarize.estimator <- function(sims.df, suffix='naive', coefname='x'){ reported_vars <- c( 'Bxy', @@ -13,10 +14,10 @@ summarize.estimator <- function(df, suffix='naive', coefname='x'){ grouping_vars <- grouping_vars[grouping_vars %in% names(df)] - part <- df[, - c(reported_vars, - grouping_vars), - with=FALSE] + part <- sims.df[, + unique(c(reported_vars, + grouping_vars)), + with=FALSE] true.in.ci <- as.integer((part$Bxy >= part[[paste0('B',coefname,'y.ci.lower.',suffix)]]) & (part$Bxy <= part[[paste0('B',coefname,'y.ci.upper.',suffix)]])) @@ -29,6 +30,7 @@ summarize.estimator <- function(df, suffix='naive', coefname='x'){ bias=bias, sign.correct =sign.correct)] + part.plot <- part[, .(p.true.in.ci = mean(true.in.ci), mean.bias = mean(bias), mean.est = mean(.SD[[paste0('B',coefname,'y.est.',suffix)]],na.rm=T),