X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/cb3f850c24bdb1c84afaf4902b33061c4460a42d..46e2d1fe4876a9ed906b723f9e5f74fcc949e339:/simulations/measerr_methods.R diff --git a/simulations/measerr_methods.R b/simulations/measerr_methods.R new file mode 100644 index 0000000..ab87d71 --- /dev/null +++ b/simulations/measerr_methods.R @@ -0,0 +1,227 @@ +library(formula.tools) +library(matrixStats) + +## df: dataframe to model +## outcome_formula: formula for y | x, z +## outcome_family: family for y | x, z +## proxy_formula: formula for w | x, z, y +## proxy_family: family for w | x, z, y +## truth_formula: formula for x | z +## truth_family: family for x | z + +### ideal formulas for example 1 +# test.fit.1 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x, binomial(link='logit'), x ~ z) + +### ideal formulas for example 2 +# test.fit.2 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x + z + y + y:x, binomial(link='logit'), x ~ z) + + +## outcome_formula <- y ~ x + z; proxy_formula <- w_pred ~ y + x + z + x:z + x:y + z:y +measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula, proxy_family=binomial(link='logit')){ + + nll <- function(params){ + df.obs <- model.frame(outcome_formula, df) + proxy.variable <- all.vars(proxy_formula)[1] + proxy.model.matrix <- model.matrix(proxy_formula, df) + response.var <- all.vars(outcome_formula)[1] + y.obs <- with(df.obs,eval(parse(text=response.var))) + outcome.model.matrix <- model.matrix(outcome_formula, df.obs) + + param.idx <- 1 + n.outcome.model.covars <- dim(outcome.model.matrix)[2] + outcome.params <- params[param.idx:n.outcome.model.covars] + param.idx <- param.idx + n.outcome.model.covars + + if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){ + ll.y.obs <- vector(mode='numeric', length=length(y.obs)) + ll.y.obs[y.obs==1] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==1,]),log=TRUE) + ll.y.obs[y.obs==0] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==0,]),log=TRUE,lower.tail=FALSE) + } + + df.obs <- model.frame(proxy_formula,df) + n.proxy.model.covars <- dim(proxy.model.matrix)[2] + proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] + + param.idx <- param.idx + n.proxy.model.covars + proxy.obs <- with(df.obs, eval(parse(text=proxy.variable))) + + if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ + ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1]) + ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE) + ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE) + } + + ll.obs <- sum(ll.y.obs + ll.w.obs) + + df.unobs <- df[is.na(df[[response.var]])] + df.unobs.y1 <- copy(df.unobs) + df.unobs.y1[[response.var]] <- 1 + df.unobs.y0 <- copy(df.unobs) + df.unobs.y0[[response.var]] <- 1 + + ## integrate out y + outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1) + + if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){ + ll.y.unobs.1 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1]) + ll.y.unobs.0 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1]) + ll.y.unobs.1 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE) + ll.y.unobs.0 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE,lower.tail=FALSE) + } + + proxy.model.matrix.y1 <- model.matrix(proxy_formula, df.unobs.y1) + proxy.model.matrix.y0 <- model.matrix(proxy_formula, df.unobs.y0) + proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable))) + + if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ + ll.w.unobs.1 <- vector(mode='numeric',length=dim(proxy.model.matrix.y1)[1]) + ll.w.unobs.0 <- vector(mode='numeric',length=dim(proxy.model.matrix.y0)[1]) + ll.w.unobs.1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==1,]),log=TRUE) + ll.w.unobs.1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE) + + ll.w.unobs.0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==1,]),log=TRUE) + ll.w.unobs.0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE) + } + + ll.unobs.1 <- ll.y.unobs.1 + ll.w.unobs.1 + ll.unobs.0 <- ll.y.unobs.0 + ll.w.unobs.0 + ll.unobs <- sum(colLogSumExps(rbind(ll.unobs.1,ll.unobs.0))) + ll <- ll.unobs + ll.obs + return(-ll) + } + + params <- colnames(model.matrix(outcome_formula,df)) + lower <- rep(-Inf, length(params)) + proxy.params <- colnames(model.matrix(proxy_formula, df)) + params <- c(params, paste0('proxy_',proxy.params)) + lower <- c(lower, rep(-Inf, length(proxy.params))) + start <- rep(0.1,length(params)) + names(start) <- params + + fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6)) + return(fit) +} + +measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit')){ + + measrr_mle_nll <- function(params){ + df.obs <- model.frame(outcome_formula, df) + + proxy.variable <- all.vars(proxy_formula)[1] + proxy.model.matrix <- model.matrix(proxy_formula, df) + + response.var <- all.vars(outcome_formula)[1] + y.obs <- with(df.obs,eval(parse(text=response.var))) + + outcome.model.matrix <- model.matrix(outcome_formula, df) + + param.idx <- 1 + n.outcome.model.covars <- dim(outcome.model.matrix)[2] + outcome.params <- params[param.idx:n.outcome.model.covars] + param.idx <- param.idx + n.outcome.model.covars + + ## likelihood for the fully observed data + if(outcome_family$family == "gaussian"){ + sigma.y <- params[param.idx] + param.idx <- param.idx + 1 + ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE) + } + + df.obs <- model.frame(proxy_formula,df) + n.proxy.model.covars <- dim(proxy.model.matrix)[2] + proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] + param.idx <- param.idx + n.proxy.model.covars + proxy.obs <- with(df.obs, eval(parse(text=proxy.variable))) + + if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ + ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1]) + ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE) + ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE) + } + + df.obs <- model.frame(truth_formula, df) + truth.variable <- all.vars(truth_formula)[1] + truth.obs <- with(df.obs, eval(parse(text=truth.variable))) + truth.model.matrix <- model.matrix(truth_formula,df) + n.truth.model.covars <- dim(truth.model.matrix)[2] + + truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)] + + if( (truth_family$family=="binomial") & (truth_family$link=='logit')){ + ll.x.obs <- vector(mode='numeric',length=dim(truth.model.matrix)[1]) + ll.x.obs[truth.obs==1] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==1,]),log=TRUE) + ll.x.obs[truth.obs==0] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==0,]),log=TRUE, lower.tail=FALSE) + } + + ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs) + + ## likelihood for the predicted data + ## integrate out the "truth" variable. + + if(truth_family$family=='binomial'){ + df.unobs <- df[is.na(eval(parse(text=truth.variable)))] + df.unobs.x1 <- copy(df.unobs) + df.unobs.x1[,'x'] <- 1 + df.unobs.x0 <- copy(df.unobs) + df.unobs.x0[,'x'] <- 0 + outcome.unobs <- with(df.unobs, eval(parse(text=response.var))) + + outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0) + outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1) + if(outcome_family$family=="gaussian"){ + ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE) + ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE) + } + + if( (proxy_family$family=='binomial') & (proxy_family$link=='logit')){ + + proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.unobs.x0) + proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.unobs.x1) + proxy.unobs <- df.unobs[[proxy.variable]] + ll.w.x0 <- vector(mode='numeric', length=dim(df.unobs)[1]) + ll.w.x1 <- vector(mode='numeric', length=dim(df.unobs)[1]) + + ll.w.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==1,]), log=TRUE) + ll.w.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==1,]), log=TRUE) + + ll.w.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE) + ll.w.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE) + } + + if(truth_family$link=='logit'){ + truth.model.matrix <- model.matrix(truth_formula, df.unobs.x0) + ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE) + ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE, lower.tail=FALSE) + } + } + + ll.x0 <- ll.y.x0 + ll.w.x0 + ll.x.x0 + ll.x1 <- ll.y.x1 + ll.w.x1 + ll.x.x1 + ll.unobs <- sum(colLogSumExps(rbind(ll.x0, ll.x1))) + return(-(ll.unobs + ll.obs)) + } + + outcome.params <- colnames(model.matrix(outcome_formula,df)) + lower <- rep(-Inf, length(outcome.params)) + + if(outcome_family$family=='gaussian'){ + params <- c(outcome.params, 'sigma_y') + lower <- c(lower, 0.00001) + } else { + params <- outcome.params + } + + proxy.params <- colnames(model.matrix(proxy_formula, df)) + params <- c(params, paste0('proxy_',proxy.params)) + lower <- c(lower, rep(-Inf, length(proxy.params))) + + truth.params <- colnames(model.matrix(truth_formula, df)) + params <- c(params, paste0('truth_', truth.params)) + lower <- c(lower, rep(-Inf, length(truth.params))) + start <- rep(0.1,length(params)) + names(start) <- params + + fit <- optim(start, fn = measrr_mle_nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6)) + + return(fit) +}