X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/e41d11afb9a80180feff844666e3ee463d20a7cd..f8f58301e0285118f7b669a96ed9367a9914ba02:/simulations/01_two_covariates.R diff --git a/simulations/01_two_covariates.R b/simulations/01_two_covariates.R new file mode 100644 index 0000000..c52a3dc --- /dev/null +++ b/simulations/01_two_covariates.R @@ -0,0 +1,85 @@ +### EXAMPLE 2_b: demonstrates how measurement error can lead to a type sign error in a covariate +### This is the same as example 2, only instead of x->k we have k->x. +### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign. +### Even when you include the proxy variable in the regression. +### But with some ground truth and multiple imputation, you can fix it. + +library(argparser) +library(mecor) +library(ggplot2) +library(data.table) +library(filelock) +library(arrow) +library(Amelia) +library(Zelig) +library(predictionError) +options(amelia.parallel="no", + amelia.ncpus=1) + +source("simulation_base.R") + +## SETUP: +### we want to estimate x -> y; x is MAR +### we have x -> k; k -> w; x -> w is used to predict x via the model w. +### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments +### The labels x are binary, but the model provides a continuous predictor + +### simulation: +#### how much power do we get from the model in the first place? (sweeping N and m) +#### + +simulate_data <- function(N, m, B0=0, Bxy=0.2, Bgy=-0.2, Bgx=0.2, y_explained_variance=0.025, gx_explained_variance=0.15, prediction_accuracy=0.73, seed=1){ + set.seed(seed) + g <- rbinom(N, 1, 0.5) + + x.var.epsilon <- var(Bgx *g) * ((1-gx_explained_variance)/gx_explained_variance) + x.epsilon <- rnorm(N,sd=sqrt(x.var.epsilon)) + xprime <- Bgx * g + x.epsilon + x <- as.integer(logistic(scale(xprime)) > 0.5) + + y.var.epsilon <- (var(Bgy * g) + var(Bxy *x) + 2*cov(Bxy*x,Bgy*g)) * ((1-y_explained_variance)/y_explained_variance) + y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon)) + y <- Bgy * g + Bxy * x + y.epsilon + + df <- data.table(x=x,xprime=xprime,y=y,g=g) + + if(m < N){ + df <- df[sample(nrow(df), m), x.obs := x] + } else { + df <- df[, x.obs := x] + } + + df <- df[,w_pred:=x] + + df <- df[sample(1:N,(1-prediction_accuracy)*N),w_pred:=(w_pred-1)**2] + df <- df[,':='(w=w, w_pred = w_pred)] + return(df) +} + +parser <- arg_parser("Simulate data and fit corrected models") +parser <- add_argument(parser, "--N", default=500, help="number of observations of w") +parser <- add_argument(parser, "--m", default=100, help="m the number of ground truth observations") +parser <- add_argument(parser, "--seed", default=4321, help='seed for the rng') +parser <- add_argument(parser, "--outfile", help='output file', default='example_2_B.feather') +args <- parse_args(parser) + +B0 <- 0 +Bxy <- 0.2 +Bgy <- -0.2 +Bgx <- 0.5 + +df <- simulate_data(args$N, args$m, B0, Bxy, Bgy, Bgx, seed=args$seed, y_explained_variance = 0.025, gx_explained_variance = 0.15) +result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bgx'=Bgx, 'seed'=args$seed) +outline <- run_simulation(df, result) + +outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) +if(file.exists(args$outfile)){ + logdata <- read_feather(args$outfile) + logdata <- rbind(logdata,as.data.table(outline)) +} else { + logdata <- as.data.table(outline) +} + +print(outline) +write_feather(logdata, args$outfile) +unlock(outfile_lock)