X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/f8f58301e0285118f7b669a96ed9367a9914ba02..a02bcbb1d4c7af0ff8e0dbba63ea31935ffb4a45:/simulations/02_indep_differential.R diff --git a/simulations/02_indep_differential.R b/simulations/02_indep_differential.R index 5a7784b..7e2e428 100644 --- a/simulations/02_indep_differential.R +++ b/simulations/02_indep_differential.R @@ -31,77 +31,135 @@ source("simulation_base.R") ## one way to do it is by adding correlation to x.obs and y that isn't in w. ## in other words, the model is missing an important feature of x.obs that's related to y. -simulate_data <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed, xy.explained.variance=0.01, u.explained.variance=0.1){ +simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, accuracy_imbalance_difference=0.3){ set.seed(seed) - - ## the true value of x - - g <- rbinom(N, 1, 0.5) - # make w and y dependent - u <- rnorm(N,0,) - - xprime <- Bgx * g + rnorm(N,0,1) - - k <- Bkx*xprime + rnorm(N,0,1.5) + 1.1*Bkx*u - - x <- as.integer(logistic(scale(xprime)) > 0.5) + z <- rbinom(N, 1, 0.5) + x <- rbinom(N, 1, Bzx * z + 0.5) - y <- Bxy * x + Bgy * g + B0 + u + rnorm(N, 0, 1) + y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bzy*z,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance) + y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon)) + y <- Bzy * z + Bxy * x + y.epsilon + + df <- data.table(x=x,y=y,z=z) - df <- data.table(x=x,k=k,y=y,g=g) - - w.model <- glm(x ~ k,df, family=binomial(link='logit')) - - if( m < N){ + if(m < N){ df <- df[sample(nrow(df), m), x.obs := x] } else { df <- df[, x.obs := x] } - df[, x.obs := x.obs] - - w <- predict(w.model, df) + rnorm(N, 0, 1) - ## y = B0 + B1x + e - - df[,':='(w=w, w_pred = as.integer(w>0.5),u=u)] + ## px <- mean(x) + ## accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) + + ## # this works because of conditional probability + ## accuracy_x0 <- prediction_accuracy / (px*(accuracy_imbalance_ratio) + (1-px)) + ## accuracy_x1 <- accuracy_imbalance_ratio * accuracy_x0 + + ## x0 <- df[x==0]$x + ## x1 <- df[x==1]$x + ## nx1 <- nrow(df[x==1]) + ## nx0 <- nrow(df[x==0]) + + ## yx0 <- df[x==0]$y + ## yx1 <- df[x==1]$y + + # tranform yz0.1 into a logistic distribution with mean accuracy_z0 + ## acc.x0 <- plogis(0.5*scale(yx0) + qlogis(accuracy_x0)) + ## acc.x1 <- plogis(1.5*scale(yx1) + qlogis(accuracy_x1)) + + ## w0x0 <- (1-x0)**2 + (-1)**(1-x0) * acc.x0 + ## w0x1 <- (1-x1)**2 + (-1)**(1-x1) * acc.x1 + pz <- mean(z) + accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) + + # this works because of conditional probability + accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz)) + accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0 + + z0x0 <- df[(z==0) & (x==0)]$x + z0x1 <- df[(z==0) & (x==1)]$x + z1x0 <- df[(z==1) & (x==0)]$x + z1x1 <- df[(z==1) & (x==1)]$x + + yz0x0 <- df[(z==0) & (x==0)]$y + yz0x1 <- df[(z==0) & (x==1)]$y + yz1x0 <- df[(z==1) & (x==0)]$y + yz1x1 <- df[(z==1) & (x==1)]$y + + nz0x0 <- nrow(df[(z==0) & (x==0)]) + nz0x1 <- nrow(df[(z==0) & (x==1)]) + nz1x0 <- nrow(df[(z==1) & (x==0)]) + nz1x1 <- nrow(df[(z==1) & (x==1)]) + + yz1 <- df[z==1]$y + yz1 <- df[z==1]$y + + # tranform yz0.1 into a logistic distribution with mean accuracy_z0 + acc.z0x0 <- plogis(0.5*scale(yz0x0) + qlogis(accuracy_z0)) + acc.z0x1 <- plogis(0.5*scale(yz0x1) + qlogis(accuracy_z0)) + acc.z1x0 <- plogis(1.5*scale(yz1x0) + qlogis(accuracy_z1)) + acc.z1x1 <- plogis(1.5*scale(yz1x1) + qlogis(accuracy_z1)) + + w0z0x0 <- (1-z0x0)**2 + (-1)**(1-z0x0) * acc.z0x0 + w0z0x1 <- (1-z0x1)**2 + (-1)**(1-z0x1) * acc.z0x1 + w0z1x0 <- (1-z1x0)**2 + (-1)**(1-z1x0) * acc.z1x0 + w0z1x1 <- (1-z1x1)**2 + (-1)**(1-z1x1) * acc.z1x1 + + ##perrorz0 <- w0z0*(pyz0) + ##perrorz1 <- w0z1*(pyz1) + + w0z0x0.noisy.odds <- rlogis(nz0x0,qlogis(w0z0x0)) + w0z0x1.noisy.odds <- rlogis(nz0x1,qlogis(w0z0x1)) + w0z1x0.noisy.odds <- rlogis(nz1x0,qlogis(w0z1x0)) + w0z1x1.noisy.odds <- rlogis(nz1x1,qlogis(w0z1x1)) + + df[(z==0)&(x==0),w:=plogis(w0z0x0.noisy.odds)] + df[(z==0)&(x==1),w:=plogis(w0z0x1.noisy.odds)] + df[(z==1)&(x==0),w:=plogis(w0z1x0.noisy.odds)] + df[(z==1)&(x==1),w:=plogis(w0z1x1.noisy.odds)] + + df[,w_pred:=as.integer(w > 0.5)] + print(mean(df[z==0]$x == df[z==0]$w_pred)) + print(mean(df[z==1]$x == df[z==1]$w_pred)) + print(mean(df$w_pred == df$x)) return(df) } -schennach <- function(df){ - - fwx <- glm(x.obs~w, df, family=binomial(link='logit')) - df[,xstar_pred := predict(fwx, df)] - gxt <- lm(y ~ xstar_pred+g, df) - -} - - parser <- arg_parser("Simulate data and fit corrected models") -parser <- add_argument(parser, "--N", default=5000, help="number of observations of w") -parser <- add_argument(parser, "--m", default=200, help="m the number of ground truth observations") -parser <- add_argument(parser, "--seed", default=432, help='seed for the rng') +parser <- add_argument(parser, "--N", default=1400, help="number of observations of w") +parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") +parser <- add_argument(parser, "--seed", default=50, help='seed for the rng') parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') +parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.01) +parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) +parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3) +parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3) +parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3) + + args <- parse_args(parser) B0 <- 0 -Bxy <- 0.2 -Bgy <- 0 -Bkx <- 2 -Bgx <- 0 +Bxy <- 0.3 +Bzy <- args$Bzy +if(args$m < args$N){ + df <- simulate_data(args$N, args$m, B0, Bxy, args$Bzx, Bzy, args$seed, args$y_explained_variance, args$prediction_accuracy, args$accuracy_imbalance_difference) -outline <- run_simulation(simulate_data(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed) - ,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=args$seed)) + result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=args$Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, error='') -outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) -if(file.exists(args$outfile)){ - logdata <- read_feather(args$outfile) - logdata <- rbind(logdata,as.data.table(outline)) -} else { - logdata <- as.data.table(outline) -} + outline <- run_simulation(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~x+z+y+x:y, truth_formula=x~z) + + outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) + if(file.exists(args$outfile)){ + logdata <- read_feather(args$outfile) + logdata <- rbind(logdata,as.data.table(outline), fill=TRUE) + } else { + logdata <- as.data.table(outline) + } -print(outline) -write_feather(logdata, args$outfile) -unlock(outfile_lock) + print(outline) + write_feather(logdata, args$outfile) + unlock(outfile_lock) +}