X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/f8f58301e0285118f7b669a96ed9367a9914ba02..cb1e895ff1e3359db17d918caa67b758c0d7e901:/simulations/02_indep_differential.R diff --git a/simulations/02_indep_differential.R b/simulations/02_indep_differential.R index 5a7784b..d4e0916 100644 --- a/simulations/02_indep_differential.R +++ b/simulations/02_indep_differential.R @@ -31,68 +31,70 @@ source("simulation_base.R") ## one way to do it is by adding correlation to x.obs and y that isn't in w. ## in other words, the model is missing an important feature of x.obs that's related to y. -simulate_data <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed, xy.explained.variance=0.01, u.explained.variance=0.1){ +simulate_data <- function(N, m, B0, Bxy, Bgy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, accuracy_imbalance_difference=0.3){ set.seed(seed) - - ## the true value of x - - g <- rbinom(N, 1, 0.5) - # make w and y dependent - u <- rnorm(N,0,) - - xprime <- Bgx * g + rnorm(N,0,1) - - k <- Bkx*xprime + rnorm(N,0,1.5) + 1.1*Bkx*u - - x <- as.integer(logistic(scale(xprime)) > 0.5) - - y <- Bxy * x + Bgy * g + B0 + u + rnorm(N, 0, 1) + g <- rbinom(N, 1, 0.5) + x <- rbinom(N, 1, 0.5) - df <- data.table(x=x,k=k,y=y,g=g) + y.var.epsilon <- (var(Bgy * g) + var(Bxy *x) + 2*cov(Bgy*g,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance) + y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon)) + y <- Bgy * g + Bxy * x + y.epsilon - w.model <- glm(x ~ k,df, family=binomial(link='logit')) + df <- data.table(x=x,y=y,g=g) - if( m < N){ + if(m < N){ df <- df[sample(nrow(df), m), x.obs := x] } else { df <- df[, x.obs := x] } - df[, x.obs := x.obs] + df <- df[,w_pred:=x] - w <- predict(w.model, df) + rnorm(N, 0, 1) - ## y = B0 + B1x + e + pg <- mean(g) + px <- mean(x) + accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) - df[,':='(w=w, w_pred = as.integer(w>0.5),u=u)] - return(df) -} + # this works because of conditional probability + accuracy_g0 <- prediction_accuracy / (pg*(accuracy_imbalance_ratio) + (1-pg)) + accuracy_g1 <- accuracy_imbalance_ratio * accuracy_g0 -schennach <- function(df){ + dfg0 <- df[g==0] + ng0 <- nrow(dfg0) + dfg1 <- df[g==1] + ng1 <- nrow(dfg1) - fwx <- glm(x.obs~w, df, family=binomial(link='logit')) - df[,xstar_pred := predict(fwx, df)] - gxt <- lm(y ~ xstar_pred+g, df) + dfg0 <- dfg0[sample(ng0, (1-accuracy_g0)*ng0), w_pred := (w_pred-1)**2] + dfg1 <- dfg1[sample(ng1, (1-accuracy_g1)*ng1), w_pred := (w_pred-1)**2] -} + df <- rbind(dfg0,dfg1) + w <- predict(glm(x ~ w_pred,data=df,family=binomial(link='logit')),type='response') + df <- df[,':='(w=w, w_pred = w_pred)] + return(df) +} parser <- arg_parser("Simulate data and fit corrected models") parser <- add_argument(parser, "--N", default=5000, help="number of observations of w") parser <- add_argument(parser, "--m", default=200, help="m the number of ground truth observations") parser <- add_argument(parser, "--seed", default=432, help='seed for the rng') parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') +parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.01) +parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) +parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3) + args <- parse_args(parser) B0 <- 0 Bxy <- 0.2 -Bgy <- 0 -Bkx <- 2 -Bgx <- 0 +Bgy <- -0.2 + +df <- simulate_data(args$N, args$m, B0, Bxy, Bgy, args$seed, args$y_explained_variance, args$prediction_accuracy, args$accuracy_imbalance_difference) + +result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference) +outline <- run_simulation_depvar(df=df, result) -outline <- run_simulation(simulate_data(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed) - ,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=args$seed)) outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) if(file.exists(args$outfile)){