From: Nathan TeBlunthuis Date: Sun, 11 Dec 2022 22:42:06 +0000 (-0800) Subject: Add another robustness check for varying levels of accuracy. X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/commitdiff_plain/8ac33c14d7e7874bf283aa9c252fa06566dc8b15?ds=sidebyside;hp=-c Add another robustness check for varying levels of accuracy. --- 8ac33c14d7e7874bf283aa9c252fa06566dc8b15 diff --git a/simulations/Makefile b/simulations/Makefile index e595811..e6a3bbe 100644 --- a/simulations/Makefile +++ b/simulations/Makefile @@ -126,7 +126,15 @@ robustness_1_jobs: 02_indep_differential.R simulation_base.R grid_sweep.py robustness_1.feather: robustness_1_jobs rm -f robustness_1.feather - sbatch --wait --verbose --array=1-$(shell cat robustness_1_jobs | wc -l) run_simulation.sbatch 0 robustness_1_jobs + sbatch --wait --verbose --array=1-1000 run_simulation.sbatch 0 robustness_1_jobs + sbatch --wait --verbose --array=1001-2000 run_simulation.sbatch 0 robustness_1_jobs + sbatch --wait --verbose --array=2001-3000 run_simulation.sbatch 0 robustness_1_jobs + sbatch --wait --verbose --array=3001-4000 run_simulation.sbatch 0 robustness_1_jobs + sbatch --wait --verbose --array=4001-$(shell cat robustness_1_jobs | wc -l) run_simulation.sbatch 0 robustness_1_jobs + +robustness_1.RDS: robustness_1.feather + rm -f robustness_1.RDS + ${srun} Rscript plot_example.R --infile $< --name "robustness_1" --remember-file $@ robustness_1_dv_jobs: simulation_base.R 04_depvar_differential.R grid_sweep.py ${srun} bash -c "source ~/.bashrc && grid_sweep.py --command 'Rscript 04_depvar_differential.R' --arg_dict \"{'N':${Ns},'m':${ms}, 'seed':${seeds}, 'outfile':['robustness_1_dv.feather'], 'y_explained_variance':${explained_variances}, 'proxy_formula':['w_pred~y']}\" --outfile robustness_1_dv_jobs" @@ -137,12 +145,26 @@ robustness_1_dv.feather: robustness_1_dv_jobs sbatch --wait --verbose --array=1-$(shell cat example_3_jobs | wc -l) run_simulation.sbatch 0 robustness_1_dv_jobs -remember_robustness_misspec.RDS: robustness_1.feather robustness_1_dv.feather - rm -f remember_robustness_misspec.RDS - sbatch --wait --verbose run_job.sbatch Rscript plot_example.R --infile robustness_1.feather --name "plot.df.robustness.1" --remember-file "remember_robustness_misspec.RDS" - sbatch --wait --verbose run_job.sbatch Rscript plot_dv_example.R --infile robustness_1_dv.feather --name "plot.df.robustness.1.dv" --remember-file "remember_robustness_mispec.RDS" +robustness_1_dv.RDS: robustness_1_dv.feather + rm -f $@ + ${srun} Rscript plot_dv_example.R --infile $< --name "robustness_1_dv" --outfile $@ + + +robustness_2_jobs: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py + rm -f $@ + ${srun} $< --command 'Rscript 01_two_covariates.R' --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.6,0.73,0.8,0.85,0.9,0.95]}' --outfile $@ + + + +START=1 +END=$(shell cat robustness_2_jobs | wc -l) +STEP=1000 +ITEMS=$(shell seq $(START) $(STEP) $(END)) +robustness_2.feather: robustness_2_jobs + $(foreach item,$(ITEMS),sbatch --wait --verbose --array=$(shell expr $(item))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 $<) +# clean: rm *.feather rm -f remembr.RDS diff --git a/simulations/robustness_check_notes.md b/simulations/robustness_check_notes.md index e6adc8a..0a287a7 100644 --- a/simulations/robustness_check_notes.md +++ b/simulations/robustness_check_notes.md @@ -1,5 +1,14 @@ -# robustness_1.RDS +# robustness\_1.RDS -Tests how robust the MLE method is when the model for $X$ is less precise. In the main result, we include $Z$ on the right-hand-side of the `truth_formula`. +Tests how robust the MLE method for independent variables with differential error is when the model for $X$ is less precise. In the main paper, we include $Z$ on the right-hand-side of the `truth_formula`. In this robustness check, the `truth_formula` is an intercept-only model. +The stats are in the list named `robustness_1` in the `.RDS` file. + +# robustness\_1\_dv.RDS + +Like `robustness\_1.RDS` but with a less precise model for $w_pred$. In the main paper, we included $Z$ in the `outcome_formula`. In this robustness check, we do not. + +# robustness_2.RDS + +This is just example 1 with varying levels of classifier accuracy.