From: chainsawriot Date: Tue, 26 Jul 2022 19:52:43 +0000 (+0200) Subject: Add simulation of listwise deletion and averaging of labeled-only estimators X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/commitdiff_plain/refs/heads/irr?ds=inline Add simulation of listwise deletion and averaging of labeled-only estimators --- diff --git a/irr/loco_loa.R b/irr/loco_loa.R new file mode 100644 index 0000000..f5269d3 --- /dev/null +++ b/irr/loco_loa.R @@ -0,0 +1,81 @@ +.emulate_coding <- function(ground_truth, Q = 1) { + if (runif(1) > Q) { + return(sample(c(0, 1), size = 1, replace = TRUE)) + } else { + return(ground_truth) + } +} + +distort_gt <- function(x, Q = NULL) { + return(purrr::map_dbl(x, .emulate_coding, Q = Q)) +} + +N <- c(1000, 3600, 14400) +m <- c(75, 150, 300) + +B0 <- c(0, 0.1, 0.3) +Bxy <- c(0.1, 0.2, 0.5) + +Q <- c(.6, .8, .9) + +conditions <- expand.grid(N, m, B0, Bxy, Q) + +colnames(conditions) <- c("N", "m", "B0", "Bxy", "Q") + +logistic <- function(x) {1/(1+exp(-1*x))} + +.step <- function(i, Bxy, B0, Q, N, m) { + x <- rbinom(N, 1, 0.5) + y <- Bxy * x + rnorm(N, 0, .5) + B0 + + dx <- as.numeric(distort_gt(x, Q = Q)) + + randomidx <- sample(seq(N), m) + + coder1x <- distort_gt(x[randomidx], Q = Q) + coder2x <- distort_gt(x[randomidx], Q = Q) + coding_data <- matrix(c(as.numeric(coder1x), as.numeric(coder2x)), nrow = 2, byrow = TRUE) + alpha <- irr::kripp.alpha(coding_data, method = "nominal") + estimated_q <- alpha$value^(1/2) + estimated_q2 <- alpha$value + + res <- data.frame(x = as.factor(x), y = y, dx = as.factor(dx)) + small_y <- y[randomidx] + small_x <- x[randomidx] + naive_mod <- glm(y~dx, data = res, x = TRUE, y = TRUE) + real_mod <- glm(y~x, data = res, x = TRUE, y = TRUE) + m1 <- glm(small_y~coder1x) + m2 <- glm(small_y~coder2x) + m3 <- glm(small_y~small_x) + correct_only_idx <- coder1x == coder2x + m4 <- glm(small_y[correct_only_idx] ~ small_x[correct_only_idx]) + lab_only_gt <- coef(m3)[2] + lab_only_avg <- mean(coef(m1)[2], coef(m2)[2]) + lab_only_correct_only <- coef(m4)[2] + return(tibble::tibble(N, m, Q, Bxy, B0, estimated_q, naive_Bxy = as.numeric(coef(naive_mod)[2]), real_Bxy = as.numeric(coef(real_mod)[2]), lab_only_gt= lab_only_gt, lab_only_avg = lab_only_avg, lab_only_correct_only = lab_only_correct_only)) +} + +## res <- list() + +## for (i in seq(nrow(conditions))) { +## message(i) +## res[[i]] <- purrr::map_dfr(1:100, ~.step(., conditions$Bxy[i], conditions$B0[i], conditions$Q[i], conditions$N[i], conditions$m[i])) +## } + +require(furrr) +plan(multisession) + +.run <- function(i, conditions) { + purrr::map_dfr(1:100, ~.step(., conditions$Bxy[i], conditions$B0[i], conditions$Q[i], conditions$N[i], conditions$m[i])) +} + +res <- future_map(seq(nrow(conditions)), .run, conditions = conditions, .progress = TRUE) + +##saveRDS(res, "rubin_res.RDS") + +conditions <- tibble::as_tibble(conditions) +conditions$res <- res + +require(tidyverse) + +conditions %>% mutate(loco_median = purrr::map_dbl(res, ~median(.$lab_only_correct_only)), loco_p025 = purrr::map_dbl(res, ~quantile(.$lab_only_correct_only, probs = 0.025)), loco_p975 = purrr::map_dbl(res, ~quantile(.$lab_only_correct_only, probs = 0.975))) %>% mutate(loa_median = purrr::map_dbl(res, ~median(.$lab_only_avg)), loa_p025 = purrr::map_dbl(res, ~quantile(.$lab_only_avg, probs = 0.025)), loa_p975 = purrr::map_dbl(res, ~quantile(.$lab_only_avg, probs = 0.975))) %>% filter(B0 == 0.1 & Bxy == 0.5) %>% select(N, m, Q, starts_with("loco"), starts_with("loa")) %>% pivot_longer(cols = loco_median:loa_p975, names_to = c("type", "tile"),names_pattern = "(.*)_(.*)", values_to = "value") %>% pivot_wider(names_from = "tile") %>% ggplot(aes(x = Q, y = median, ymin = p025, ymax = p975, fill = type, col = type)) + geom_line() + geom_ribbon(alpha = 0.2) + facet_grid(N~m) + geom_hline(yintercept = .5, linetype = 2, col = "grey")