Week 5 R tutorial (supplement)

Statistics and statistical programming
Northwestern University
MTS 525

Aaron Shaw

October 13, 3030

Contents

Getting started (more better plots) 1
Plotting a univariate time series 3
Tidying timeseries data for better plots 3
Working on ggplot axis labels, titles, and scales 6
Long versus wide data (and why long data is often helpful) 10

Getting started (more better plots)

This is a supplement to the Week 5 R tutorial focused on elaborating some examples of time series plots
and more polished plots using ggplot2. I'll work some data on state-level COVID-19 in the United States
published by The New York Times (NYT). You can access the data an details about the sources, measurement,
and different datasets available via the NYT github repository.

To start, I'll load up the tidyverse library and also attach the lubridate package to help handle dates and
times. Then I'll import the “raw csv” from the web, and take a look at the dataset:

library(tidyverse)
library(lubridate)

data_url <- url("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv")
d <- read_csv(data_url)

d

A tibble: 12,004 x 5

#it date state fips cases deaths
<date> <chr> <chr> <dbl> <dbl>
1 2020-01-21 Washington 53 1 0
2 2020-01-22 Washington 53 1 0
3 2020-01-23 Washington 53 1 0
4 2020-01-24 Illinois 17 1 0
5 2020-01-24 Washington 53 1 0

https://ggplot2.tidyverse.org
https://github.com/nytimes/covid-19-data

6 2020-01-25 California 06
7 2020-01-25 Illinois 17
8 2020-01-25 Washington 53
9 2020-01-26 Arizona 04
10 2020-01-26 California 06
... with 11,994 more rows

N~ P P
O O O O O

For the sake of my examples, I'm planning to work with the date, state, cases, and deaths variables.
Notice that by using the read_csv() function to import the data, R already recognizes the date column
as dates. It looks like I need to convert the state variable to a factor, however. After I do that I can get a
quick sense of how much data I have for each state with a univariate table that just counts the number of
observations (rows) for each value of state.

d$state <- factor(d$state)

table(d$state)

##

Alabama Alaska Arizona
208 209 255
Arkansas California Colorado
210 256 216
Connecticut Delaware District of Columbia
213 210 214
Florida Georgia Guam
220 219 206
Hawaii Idaho Il1linois
#it 215 208 257
Indiana Towa Kansas
215 213 214
Kentucky Louisiana Maine
215 212 209
#it Maryland Massachusetts Michigan
#i 216 249 211
Minnesota Mississippi Missouri
215 210 214
Montana Nebraska Nevada
208 233 216
#H# New Hampshire New Jersey New Mexico
219 217 210
New York North Carolina North Dakota
220 218 210
Northern Mariana Islands Ohio Oklahoma
193 212 215
it Oregon Pennsylvania Puerto Rico
222 215 208
Rhode Island South Carolina South Dakota
220 215 211
Tennessee Texas Utah
#it 216 238 225
Vermont Virgin Islands Virginia
214 207 214
Washington West Virginia Wisconsin
260 204 245
H# Wyoming

210

Plotting a univariate time series

I recommend using geom_path() to create univariate time series plots. Specifically, I'll call geom_line(),
which is a specialized version of geom_path() that connects observations in order according to the values of
variable that is mapped to the x-axis. By convention, a univariate time series maps dates to the x-axis, so
this will just plot a line connecting the dots over time.

For my first example, I want to build up a plot of weekly case counts in Illinois. I can start off by just plotting
the cumulative cases for all of the states and work my way towards the specific plot I want from there:

ggplot(data = d, aes(date, cases)) +
geom_line()

8e+05 -

6e+05 -

cases

4e+05 -

2e+05-

Oe+00 -

Apr Jul Oct
date

Notice that ggplot handles the date variable quite well by default! It recognizes the units of time and
generates axis labels in terms of months. Also notice that ggplot handles the axis labels for the cases
variable. . . less well. T don’t know about you, but my brain doesn’t parse scientific notation quickly/easily.

Tidying timeseries data for better plots

Okay, let’s get to work cleaning all this up. At this point, my next steps are to (1) restrict the data to the
Nlinois cases; (2) reorganize the cumulative daily case counts into weekly counts; and (3) plot it again with
better axis labels and a nice title.

I can restrict the data to Illinois in a few ways. Since I'm using ggplot, I'll work with Tidyverse “pipes” (%>%)
and “verbs” (in this case, filter):
d %>%

filter(state == "Illinois") %>%

ggplot(aes(date, cases)) +

https://ggplot2.tidyverse.org/reference/geom_path.html

geom_line()

3e+05-

2e+05 -

cases

le+05-

0e+00 -

Apr Jul Oct
date

That’s already much less cluttered. Inserting a call to the Tidyverse mutate, group_by, and summarize verbs
can help me generate the weekly counts I'm looking for. Here’s the code to produce a new object. I'll walk
through it below:

il_weekly_cases <- d %>%

filter(state == "Illinois") %>%

mutate (
diff_cases = c(cases[1], diff(cases, lag = 1)),
weekdate = cut(date, "week")

) B>

group_by (weekdate) %>%

summarize (new_cases = sum(diff_cases, na.rm = T),)

il_weekly_cases

A tibble: 38 x 2

weekdate new_cases
<fct> <dbl>
1 2020-01-20 1
2 2020-01-27 1
3 2020-02-03 0
4 2020-02-10 0
5 2020-02-17 0
6 2020-02-24 1
7 2020-03-02 4
8 2020-03-09 87

9 2020-03-16 953
10 2020-03-23 3568
... with 28 more rows

There’s quite a lot happening there. I'll go through it verb-by-verb.

First, I use mutate to create a diff_cases variable that disaggregates the cumulative values of cases (read
the documentation for diff to learn more about this one). Differenced values alone wouldn’t produce the
same number of items (try running length(1:10) and compare that with length(diff(1:10, 1)) to see
what I mean), so I stores the first value of my cases variable and then append the differenced values after
that. Within the same call to mutate I also create a new variable weekdate that collapses the dates into
weeks (see the documentation for cut.Date) and stores the resulting strings as factors (e.g., a factor where
the levels correspond to a series of Mondays: “2020-01-20”, “2020-01-27”...). Hopefully, so far so good?

Next, I use group_by to aggregate everything by my weekdate factor values.

Finally I use summarize to reshape my data and collapse everything into weekly counts of new cases (notice
that I use sum inside the summarize call to add up the case counts within the grouping variable). Okay, let’s
see about plotting this now:

Hmm. looks like I have a problem with my dates. Let’s troubleshoot this:

class(il_weekly_cases$weekdate)

[1] "factor"

Whoops. It looks like I need to convert that weekdate variable into an object of class “date” so that it
will work with ggplot. There are a number of ways I could do this, but I’ll just make a new variable by
first converting weekdate to a character vector and then converting that into a date using as.Date (and
remember that it is sometimes easier to read these “nested” commands from the inside-out).

il_weekly_cases$date <- as.Date(as.character((il_weekly_cases$weekdate)))
il_weekly_cases

A tibble: 38 x 3

weekdate new_cases date

<fct> <dbl> <date>

1 2020-01-20 1 2020-01-20
2 2020-01-27 1 2020-01-27
3 2020-02-03 0 2020-02-03
4 2020-02-10 0 2020-02-10
5 2020-02-17 0 2020-02-17
6 2020-02-24 1 2020-02-24
7 2020-03-02 4 2020-03-02
8 2020-03-09 87 2020-03-09
9 2020-03-16 953 2020-03-16
10 2020-03-23 3568 2020-03-23
... with 28 more rows

That ought to work now:

plotl <- il_weekly_cases %>’
ggplot (aes(date, new_cases)) +
geom_line()

plotl

15000 -

10000 -

new_cases

5000 -

Apr Jul Oct
date

Much better! Notice that the final week of the data appears to fall off a cliff. That’s just an artifact of the
way that the NYT has published the data for part of the most recent week. Once it updates, the case count
probably won’t drop like that (yikes). Anyhow, onwards to cleaning things up and adding a title.

Working on ggplot axis labels, titles, and scales

As T mentioned briefly in class ggplot2 treats labels, titles, and scales as “layers” within it’s “grammar of
graphics” (and yes, I'm rolling my eyes as I type those scare-quotes). For the purposes of our example here
I'm going to use scale_date to work with the x-axis, scale_continuous to work with the y-axis, and labs
to clean up the title and axis labels.

For starters, let’s see whether there might be any way I want to improve the axis labels. The ggplot defaults
for my date variable are pretty good already, but maybe I want to incorporate a label/break for each month
as well as a more granular grid in the background that shows the weeks? Here’s what all of that looks like:

plot2 <- plotl + scale_x_date(date_labels = "Ib", date_breaks = "1 month", date_minor_breaks = "1 week"
plot2

15000 -

O

& 10000-
@
2
=
)
c

5000 -

O -

Feb Mar Apr May Jun Jul Aug Sep Oct
date

The ggplot documentation for scale_date can give you some other examples and ideas. Also, notice how I
appended the scale_date layer to my existing plot and stored it as a new object? This can make it easier to
work iteratively without losing any of my earlier layers along the way.

Now I can fix up the y-axis labels a bit using a call to the 1abels argument after I load the scales package.

library(scales)
plot3 <- plot2 + scale_y_continuous(label = comma)
plot3

https://ggplot2.tidyverse.org/reference/scale_date.html

15,000 -

O

& 10,000~
@
2
=
)
c

5,000 -

O -

Feb Mar Apr May Jun Jul Aug Sep Oct
date

Nearly done. All that’s left is a title and better axis names. I'll do that with yet another layer.

plot4 <- plot3 + labs(x = "Week (in 2020)", y = "New cases", title = "COVID-19 cases in Illinois")
plot4d

COVID-19 cases in lllinois

15,000 -

10,000 -

New cases

5,000 -

Feb Mar Apr May Jun Jul Aug Sep Oct
Week (in 2020)

Last, but not least, I mentioned in our class session that ggplot also has “themes” that can be useful for
styling plots. One I have used for publications is the “light” theme. Here’s how to apply that:

plot4 + theme_light()

COVID-19 cases in lllinois

15,000

10,000

New cases

5,000

Feb Mar Apr May Jun Jul Aug Sep Oct
Week (in 2020)

That’s looking much better than when we started! If you wanted to export it as a standalone file (e.g., .png,
.pdf, or whatever), I recommend looking at the documentation for the ggsave () function, which is available
via ggplot2. Base R also has a save() function that you can work with, although it can be a bit more
complicated to get comfortable with.

Long versus wide data (and why long data is often helpful)

So what if you wanted to plot a multivariate time series (e.g., the same plot for more than one state and/or
for more than one measure)? As always, you have a number of options, but the most effective way to achieve
this with ggplot involves learning to work with “long” format data.

Thus far, we have worked mostly with “wide” format data where (nearly) every row corresponds to a single
unit/observation and every column corresponds to a variable (for which we usually have no more than one
value attributed to any unit/observation). Wide format data is great for many things, but it turns out that
learning to work with long format data can be super helpful for a number of purposes. Producing richer,
multidimensional ggplot visualizations is one of them.

Consider the format of my tidied dataframe that I used for plotting:

il_weekly_cases

A tibble: 38 x 3

weekdate new_cases date

#t <fct> <dbl> <date>

1 2020-01-20 1 2020-01-20
2 2020-01-27 1 2020-01-27
3 2020-02-03 0 2020-02-03
4 2020-02-10 0 2020-02-10

10

##
#
##
##
##
10

© 00 N O O;

...

This dataframe is in a “wide” format. Each row is a week and each column is a variable unique to that week.

2020-02-17
2020-02-24
2020-03-02
2020-03-09
2020-03-16
2020-03-23
with 28

> = O

87

953

3568

more rows

2020-02-17
2020-02-24
2020-03-02
2020-03-09
2020-03-16
2020-03-23

Our original dataframe was a bit “longer”:

d

A tibble: 12,004 x 5

date state fips cases deaths
<date> <fct> <chr> <dbl> <dbl>
1 2020-01-21 Washington 53 1 0
2 2020-01-22 Washington 53 1 0
3 2020-01-23 Washington 53 1 0
4 2020-01-24 Illinois 17 1 0
5 2020-01-24 Washington 53 1 0
6 2020-01-25 Califormia 06 1 0
7 2020-01-25 Illinois 17 1 0
8 2020-01-25 Washington 53 1 0
9 2020-01-26 Arizona 04 1 0
10 2020-01-26 California 06 2 0
... with 11,994 more rows

We see multiple observations per state (I think I would say the units or rows correspond to “state-dates” or
something like that). It’s not completely “long” however, because we also have multiple columns corresponding
to the two variables of interest: cases and deaths. The point I want to make is that there are a number of
ways we can make this data “longer.” For the purposes of producing a multi-state plot like the one above, the
most important of these is going to involve dropping the step where I filtered by state=="I1linois" and
replacing by a group_by step before I create my weekdate variable. I'm also going to go ahead and drop the
date and fips variables because they’re just getting in my way at this point. I'll start there

weekly <- d %>%

group_by (state) %>%

mutate (
weekdate = cut(date, "week"),

) w>h

select(state, cases, deaths, weekdate)
weekly
A tibble: 12,004 x 4
Groups: state [55]
state cases deaths weekdate
<fct> <dbl> <dbl> <fct>
1 Washington 1 0 2020-01-20
2 Washington 1 0 2020-01-20
3 Washington 1 0 2020-01-20
4 Illinois 1 0 2020-01-20
5 Washington 1 0 2020-01-20
6 California 1 0 2020-01-20
7 Illinois 1 0 2020-01-20
8 Washington 1 0 2020-01-20

11

9 Arizona 1 0 2020-01-20
10 California 2 0 2020-01-20
... with 11,994 more rows

I'm getting somewhere with this, I promise. One of the principles of “tidy” data is to make it so that every
variable has a column, every observation has a row, and every value has a cell. Right now, I’ve got multiple
observations for each state-week spread across multiple rows. Remember that my cases and deaths variables
are actually cumulative counts, so I really only need to store the maximum value for each state-week in order
to calculate the new cases per state-week. Let’s see what to do about that:

tidy_weekly <- weekly %>%
group_by (state, weekdate) %>%
summarize (
cum_cases = max(cases, na.rm = T),
cum_deaths = max(deaths, na.rm = T)

)

tidy_weekly$weekdate <- as.Date(as.character(tidy_weekly$weekdate))

tidy_weekly <- tidy_weekly %>%
group_by(state) %>%
arrange (-desc(weekdate)) %>
mutate (
new_cases = c(cum_cases[1], diff(cum_cases, lag = 1)),
new_deaths = c(cum_deaths[1], diff(cum_deaths, lag = 1)),
)

tidy_weekly

A tibble: 1,780 x 6
Groups: state [55]

state weekdate cum_cases cum_deaths new_cases new_deaths
<fct> <date> <dbl> <dbl> <dbl> <dbl>
1 Arizona 2020-01-20 1 0 1 0
2 California 2020-01-20 2 0 2 0
3 Illinois 2020-01-20 1 0 1 0
4 Washington 2020-01-20 1 0 1 0
b5 Arizona 2020-01-27 1 0 0 0
6 California 2020-01-27 6 0 4 0
7 Illinois 2020-01-27 2 0 1 0
8 Massachusetts 2020-01-27 1 0 1 0
9 Washington 2020-01-27 1 0 0 0
10 Arizona 2020-02-03 1 0 0 0
... with 1,770 more rows

This is headed in the right direction. For some purposes, though, it’s still not quite “long” enough For starters,
I can drop the cumulative cases and deaths columns. The other thing I can do is “pivot” the data to organize
the new_cases and new_deaths measures a little differently. To manage this, I’ll use the pivot_longer ()
function (part of the tidyr package from the tidyverse). I will also go ahead and coerce my weekdate into a
Date object again:

long_weekly <- tidy_weekly 7%>%
select(state, weekdate, new_cases, new_deaths) 7>/
pivot_longer(
cols = starts_with("new"),
names_to = "variable",

12

values_to = "value"

)
long_weekly
A tibble: 3,560 x 4
Groups: state [55]
state weekdate variable value
<fct> <date> <chr> <dbl>
1 Arizona 2020-01-20 new_cases 1
2 Arizona 2020-01-20 new_deaths 0
3 California 2020-01-20 new_cases 2
4 California 2020-01-20 new_deaths 0
b5 Illinois 2020-01-20 new_cases 1
6 Illinois 2020-01-20 new_deaths 0
7 Washington 2020-01-20 new_cases 1
8 Washington 2020-01-20 new_deaths 0
9 Arizona 2020-01-27 new_cases 0
10 Arizona 2020-01-27 new_deaths 0
... with 3,550 more rows

Can you see what that did? I now have two rows of data for every state-week. One that contains a value for
new_cases and one that contains a value for new_deaths. Both of those variables have been “pivoted” into a
single variable column.

Before we move forward I'm going to clean up the values of variable.

long_weekly <- long_weekly 7>7
mutate (

variable = recode(variable, new_cases = "new cases", new_deaths = "new deaths")

)

Okay, prepared with my tidy_weekly and my long_weekly tibbles, I'm now ready to generate some more
interesting multidimensional plots. Let’s start with the same sort of time series of new cases we made for
Illinois before so we can see how to replicate that with this new data structure:

long_weekly 7%>%
filter(
state
) W%
ggplot (aes(weekdate, value)) +
geom_line()

== "Tllinois" & variable == '"new cases"

13

15000 -

10000 -

value

5000 -

Apr Jul Oct
weekdate

Now we can easily plot Illinois cases against deaths from the same tibble:

long_weekly 7%>%
filter(state == "Illinois") %>%
ggplot (aes(weekdate, value, color = variable)) +
geom_line()

14

15000 -

10000 - variable
o)
> —
C_>U new cases
— new deaths
5000 -
O -
Apr Jul Oct
weekdate

That plot isn’t so great because the death counts are dwarfed by the case counts. Thank goodness!

Now let’s compare Illinois case counts against some its neighbors in the upper midwest:

upper_midwest <- c("Illinois", "Michigan", "Wisconsin", "Iowa", "Minnesota")

long_weekly %>%
filter(state %in) upper_midwest & variable == "new cases") %>/
ggplot (aes(weekdate, value, color = state)) +
geom_line()

15

15000 -
State
— lllinois
10000 -
5 — lowa
‘;‘ —— Michigan
— Minnesota
—— Wisconsin
5000 -
O-
Apr Jul Oct
weekdate

Now that’s getting a bit more interesting.

What about finding some way to also incorporate the death counts? Well, ggplot has another layer option
called “facets” that can help produce multiple plots and present them alongside each other (or in a grid).
Here’s an example that creates a faceted “grid” (really just a side-by-side comparison) of case counts and
deaths for the same five states.

midwest_plot <- long_weekly 7>%
filter(state %in) upper_midwest) %>%
ggplot (aes(weekdate, value, color = state)) +
geom_line() +
facet_grid(rows = vars(variable), scales = "free_y")

midwest_plot

16

15000 -

3
10000 - =
o
QD
wn
[¢]
(7]
5000 - state
— lllinois
3 0- — lowa
g —— Michigan
— Minnesota
750 -
—— Wisconsin
=)
g
500~ =
(0]
2l
=1
(7]
250~
O -
Apr Jul Oct
weekdate

Now we can clean up some of the other elements we worked on with the original plot (axes, title, etc.). I'll
bake that into a single chunk below.

midwest_plot + scale_x_date(date_labels = "Jb", date_breaks = "1 month", date_minor_breaks = "1 week") -

17

COVID-19 cases in the Upper Midwest

15,000 -
]
[¢)
10,000 - =
o
D
[72]
]
5,000 - state
—— lllinois
0+ — lowa
— Michigan
750 - — Minnesota
—— Wisconsin
3
500 - i
D
2
>
[0}
250 -
O,

Féb Mar Abr May Jdn iul Aﬂg Sép Oct
Week (in 2020)

18

	Getting started (more better plots)
	Plotting a univariate time series
	Tidying timeseries data for better plots
	Working on ggplot axis labels, titles, and scales
	Long versus wide data (and why long data is often helpful)

