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Leftovers!

There is a whole lot we will not have a chance to cover in this course related to regression analysis and
interpretation, but I wanted to write out a brief R tutorial on some topics that are just beyond the reach
of the material introduced by our textbook and problem sets. If you have any interest/need to apply these
kinds of techniques in your final projects, I hope these examples will help and give you a sense of where/how
to direct your questions. As always, please get in touch when you run into trouble.

Import data for the examples

For all of the examples this week, I’ll work with the population.tsv dataset from back in Week 6. The
following lines of code load it and clean it up a bit. Since we’ve worked with this dataset before I will not
revisit the process of “getting to know” it.

d <- read.delim(url("https://communitydata.science/~ads/teaching/2020/stats/data/week_06/population.tsv

d$j <- as.logical(d$j)

d$l <- as.logical(d$l)

d$k <- factor(ds$k,
levels=c(1,2,3),
labels=c("some", "lots", "all"))

d <- d[complete.cases(d),]

Transformations

It is often necessary to transform variables for modeling (we’ll discuss some reasons why in class). Here are
some common transformations with example code to perform them in R. Keep in mind that you also know
some others (e.g., you know how to standardize a variable or take the square root).


https://communitydata.science/~ads/teaching/2020/stats/data/week_06/

Interaction terms

Interaction terms are best handled using the I() function (note the capitalization). I start with a “base”
model and update it to add the interaction.

m.base <- formula(y ~ x + j)
summary (lm(m.base, data=d))

##

## Call:

## 1m(formula = m.base, data = d)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.2058 -2.5528 -0.0673 2.4728 5.1225

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.09192 0.12594 0.730 0.466

## x 2.97879 0.03058 97.420 <2e-16 ***

## jTRUE 0.10907 0.13753 0.793 0.428

##H -

## Signif. codes: 0O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
#i#

## Residual standard error: 2.995 on 1897 degrees of freedom
## Multiple R-squared: 0.8335, Adjusted R-squared: 0.8333
## F-statistic: 4748 on 2 and 1897 DF, p-value: < 2.2e-16

m.i <- update.formula(m.base, . ~ . + I(x*xj))
summary (Ilm(m.i, data=d))

##

## Call:

## Im(formula = m.i, data = d)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.2662 -2.5353 -0.0366 2.4658 4.9981

##

## Coefficients:

#H# Estimate Std. Error t value Pr(>ltl)

## (Intercept) 0.03985 0.14590 0.273 0.785

## x 2.99836 0.04124 72.713 <2e-16 *x*xx*
## jTRUE 0.22157 0.21026 1.054 0.292

# I(x * j) -0.04348 0.06147 -0.707 0.479

## ———

## Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## Residual standard error: 2.996 on 1896 degrees of freedom
## Multiple R-squared: 0.8335, Adjusted R-squared: 0.8333
## F-statistic: 3164 on 3 and 1896 DF, p-value: < 2.2e-16

Polynomial (square, cube, etc.) terms

Polynomial terms can easily be created using I() as well:



m.poly <- update.formula(m.base, . ~ . + I(x72))
summary (Im(m.poly, data=d))

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = m.poly, data = d)
Residuals:

Min 1Q Median 3Q Max
-5.1795 -2.5618 -0.0642 2.4480 5.2871
Coefficients:

Estimate Std. Error t value
(Intercept) 0.06051 0.14814  0.408
X 3.01171 0.08725 34.519
jTRUE 0.10684 0.13767 0.776
I(x72) -0.00449 0.01114 -0.403
Signif. codes: O 'x*xx' 0.001 '*x' 0.01

Residual standard error: 2.996 on 1896 degrees of freedom
Multiple R-squared: 0.8335, Adjusted R-
F-statistic: 3164 on 3 and 1896 DF, p-value: < 2.2e-16

Pr(>1tl)
0.683
<2e-16 *xxx
0.438
0.687

'x' 0.05 '.' 0.1

squared: 0.8332

Need higher order polynomials? Try including I(x"3) and so on...

Creating polynomials this way is intuitive, but can also create a little bit of a messy situation for reasons
that go beyond the scope of our course. In these circumstances, using the poly () function is useful (look up
“orthogonalized polynomials” online to learn more). Generally speaking, creating polynomials in this way
impacts the interpretation as well as the model estimates, so you should only use it if you need to and once
you’ve taken the time to actually learn what is happening. That said, here’s what the code could look like:

m.poly2 <- formula(y ~ j + poly(x,2))
summary (Im(m.poly2, data=d))

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = m.poly2, data = d)
Residuals:

Min 1Q Median 3Q Max
-5.1795 -2.5618 -0.0642 2.4480 5.2871
Coefficients:

Estimate Std. Error t value
(Intercept) 7.8241 0.0962 81.329
FjTRUE 0.1068 0.1377 0.776
poly(x, 2)1 291.9278 2.9973 97.398
poly(x, 2)2 -1.2080 2.9983 -0.403
Signif. codes: O '**x' 0.001 'xx' 0.01

Residual standard error: 2.996 on 1896 degrees of freedom
Multiple R-squared: 0.8335, Adjusted R-
F-statistic: 3164 on 3 and 1896 DF, p-

Pr(>1tl)
<2e-16 ***
0.438
<2e-16 **x*
0.687

'x' 0.056 '.' 0.1

squared: 0.8332
value: < 2.2e-16

1

1



Higher order (to the nth degree) terms can be created by using higher values of n as an argument to
(e.g. poly(x, n)).

Log-transformations

We covered log transformations (usually natural logarithms) before, but just in case, here they are again. I
usually default to using loglp() because it is less prone ot fail in the event your data (like mine) contains
many zeroes. That said, if you have a lot of -1 values you may need something else:

m.log <- update.formula(m.base, . ~ loglp(x) + j)
summary (1lm(m.log, data=d))

##

## Call:

## 1m(formula = m.log, data = d)

##

## Residuals:

## Min 1Q Median 3Q Max

## -7.120 -2.813 -0.008 2.489 14.603

##

## Coefficients:

#t Estimate Std. Error t value Pr(>ltl)

## (Intercept) -2.74890 0.18217 -15.090 <2e-16 *x**

## loglp(x) 9.85486 0.12838 76.766 <2e-16 ***

## jFTRUE -0.02979 0.16624 -0.179 0.858

#H#t ——-

## Signif. codes: O 'xxx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 3.621 on 1897 degrees of freedom
## Multiple R-squared: 0.7566, Adjusted R-squared: 0.7563
## F-statistic: 2948 on 2 and 1897 DF, p-value: < 2.2e-16

Keep in mind that you can use other bases for your logarithmic transformations. Check out the documentation
for 1og() for more information.

Interpreting regression results with model-predicted values

When you report the results of a regression model, you should provide a table summarizing the model as well
as some interpretation that renders the model results back into the original, human-intelligible measures and
units specific to the study.

This was covered in one of the resources I distributed last week (the handout on logistic regression from Mako
Hill), but I wanted to bring it back because it is important. Please revisit that handout to see a worked
example that walks through the process. The rest of this text is a bit of a rant about why you should bother
to do so.

When is a regression table not enough? In textbook/homework examples, this is not an issue, but in real
data it matters all the time. Recall that the coefficient estimated for any single predictor is the expected
change in the outcome for a 1-unit change in the predictor holding all the other predictors constant. What
value are those other predictors held constant at? Zero! This is unlikely to be the most helpful or intuitive
way to understand your estimates (for example, what if you have a dichotomous predictor, what does it mean
then?). Once your models get even a little bit complicated (quick, exponentiate a log-transformed value and
tell me what it means!), the regression-table-alone approach becomes arguably worse than useless.

What is to be done? Provide predicted estimates for real, reasonable examples drawn from your dataset! For
instance, if you were regressing lifetime earnings on a bunch of different predictors including years of education,
gender, race, age, and height, you would, of course, start by showing your readers the table that includes


https://communitydata.science/~mako/2017-COM521/logistic_regression_interpretation.html

all of the coefficients, standard errors, etc. Then you chould also provide some specific predicted values for
“prototypical” individuals in your dataset. Regression models usually incorporate earnings as a square-root or
log-transformed measure, so the table of raw model results won’t be easy to interpret. It is probably far more
helpful to translate the model results into estimates of how much more/less you would we estimate 30 year
old woman of average height with a college degree to change if they were white vs. asian/pacific islander.
These prototypical predicted values (also sometimes referred to as “marginal effects”) may be presented as
specific point-estimates in the text and/or using a visualization of some sort (e.g., lines plotting the predicted
lifetime earnings by race over the observed range of age...). You can (and should!) even generate confidence
intervals around them (But that’s a whole separate rant. .. ).

The point that I hope you take away is that just because you produced a regression table with some
p-values and stars in it, your job is not done. You should always do the work to convey your results in a
human-intelligible manner by translating the model back into some model-predicted estimates for reasonable
combinations of your predictor variables. Once you’ve got the hang of that, you should also work on conveying
the uncertainty /confidence around your predictions given the data/model.
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