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Leftovers!
There is a whole lot we will not have a chance to cover in this course related to regression analysis and
interpretation, but I wanted to write out a brief R tutorial on some topics that are just beyond the reach
of the material introduced by our textbook and problem sets. If you have any interest/need to apply these
kinds of techniques in your final projects, I hope these examples will help and give you a sense of where/how
to direct your questions. As always, please get in touch when you run into trouble.

Import data for the examples
For all of the examples this week, I’ll work with the population.tsv dataset from back in Week 6. The
following lines of code load it and clean it up a bit. Since we’ve worked with this dataset before I will not
revisit the process of “getting to know” it.
d <- read.delim(url("https://communitydata.science/~ads/teaching/2020/stats/data/week_06/population.tsv"))

d$j <- as.logical(d$j)
d$l <- as.logical(d$l)
d$k <- factor(d$k,

levels=c(1,2,3),
labels=c("some", "lots", "all"))

d <- d[complete.cases(d),]

Transformations
It is often necessary to transform variables for modeling (we’ll discuss some reasons why in class). Here are
some common transformations with example code to perform them in R. Keep in mind that you also know
some others (e.g., you know how to standardize a variable or take the square root).
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Interaction terms

Interaction terms are often best handled using the I() function (note the capitalization). You can also
incorporate interactions by multiplying the two variables involved directly within the model formula. In the
example below, I start with a “base” model and then update it to add the interaction term.
m.base <- formula(y ~ x + j)
summary(lm(m.base, data=d))

##
## Call:
## lm(formula = m.base, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2058 -2.5528 -0.0673 2.4728 5.1225
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09192 0.12594 0.730 0.466
## x 2.97879 0.03058 97.420 <2e-16 ***
## jTRUE 0.10907 0.13753 0.793 0.428
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.995 on 1897 degrees of freedom
## Multiple R-squared: 0.8335, Adjusted R-squared: 0.8333
## F-statistic: 4748 on 2 and 1897 DF, p-value: < 2.2e-16
m.i <- update.formula(m.base, . ~ . + I(x*j))
summary(lm(m.i, data=d))

##
## Call:
## lm(formula = m.i, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2662 -2.5353 -0.0366 2.4658 4.9981
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03985 0.14590 0.273 0.785
## x 2.99836 0.04124 72.713 <2e-16 ***
## jTRUE 0.22157 0.21026 1.054 0.292
## I(x * j) -0.04348 0.06147 -0.707 0.479
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.996 on 1896 degrees of freedom
## Multiple R-squared: 0.8335, Adjusted R-squared: 0.8333
## F-statistic: 3164 on 3 and 1896 DF, p-value: < 2.2e-16

Evaluating whether interaction terms are important or improve the fit of your model is a topic best left
out of this discussion for now. That said, if you need to include an interaction term, you now have a basic
idea of how to do it. Interpreting interaction terms is generally best done using model-predicted values. For
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example, in this case where x is continuous and j is dichotomous, you might generate a “hypothetical” dataset
incorporating the range of observed values for x at each of the two values of j (that would yield a “fake” data
frame with n × 2 rows). You can then plot the predicted values of y for each of the j categories over the x
distribution (imagine: a plot with x on the x-axis, y on y-axis, and lines of different colors corresponding to
the different levels of j). 1

Needless to say, there’s a lot more to be said about interactions. You can read more in this econometrics
textbook, which seems to have pretty thorough coverage of the fundamentals as well as example R code.

Polynomial (square, cube, etc.) terms

Polynomial terms can easily be created using I() as well. You can also create a new variable in your data
called x.2 or something like that by writing x.2 <- xˆ2 if that seems simpler. Either way, you’ll wind
up adding that to your model formula (either by creating a new formula or using the update.formula()
function as I do here).
m.poly <- update.formula(m.base, . ~ . + I(x^2))
summary(lm(m.poly, data=d))

##
## Call:
## lm(formula = m.poly, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1795 -2.5618 -0.0642 2.4480 5.2871
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.06051 0.14814 0.408 0.683
## x 3.01171 0.08725 34.519 <2e-16 ***
## jTRUE 0.10684 0.13767 0.776 0.438
## I(x^2) -0.00449 0.01114 -0.403 0.687
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.996 on 1896 degrees of freedom
## Multiple R-squared: 0.8335, Adjusted R-squared: 0.8332
## F-statistic: 3164 on 3 and 1896 DF, p-value: < 2.2e-16

Need higher order polynomials? Try including I(xˆ3) and so on. . .

Creating polynomials this way is intuitive, but can also create a little bit of a messy situation for reasons
that go beyond the scope of our course (look up “orthogonalized polynomials” online to learn more). In these
circumstances, using the poly() function is useful, but potentially confusing. Generally speaking, creating
polynomials in this way impacts the interpretation as well as the model estimates, so you should only use it
if you need to and once you’ve taken the time to actually learn what is happening. That said, here’s what
the code could look like:
m.poly2 <- formula(y ~ j + poly(x,2))
summary(lm(m.poly2, data=d))

##
## Call:
## lm(formula = m.poly2, data = d)
##

1An okay example of this appears in this paper that I worked on a few years ago.
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## Residuals:
## Min 1Q Median 3Q Max
## -5.1795 -2.5618 -0.0642 2.4480 5.2871
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.8241 0.0962 81.329 <2e-16 ***
## jTRUE 0.1068 0.1377 0.776 0.438
## poly(x, 2)1 291.9278 2.9973 97.398 <2e-16 ***
## poly(x, 2)2 -1.2080 2.9983 -0.403 0.687
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.996 on 1896 degrees of freedom
## Multiple R-squared: 0.8335, Adjusted R-squared: 0.8332
## F-statistic: 3164 on 3 and 1896 DF, p-value: < 2.2e-16

Higher order (to the nth degree) terms can be created by using higher values of n as an argument to
(e.g. poly(x, n)).

Log-transformations

We covered log transformations (usually natural logarithms) before, but just in case, here they are again. I
usually default to using log1p() because it is less prone to fail in the event your data (like most of mine)
contains many zeroes. That said, if you have a lot of -1 values you may need something else:
m.log <- update.formula(m.base, . ~ log1p(x) + j)
summary(lm(m.log, data=d))

##
## Call:
## lm(formula = m.log, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.120 -2.813 -0.008 2.489 14.603
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.74890 0.18217 -15.090 <2e-16 ***
## log1p(x) 9.85486 0.12838 76.766 <2e-16 ***
## jTRUE -0.02979 0.16624 -0.179 0.858
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.621 on 1897 degrees of freedom
## Multiple R-squared: 0.7566, Adjusted R-squared: 0.7563
## F-statistic: 2948 on 2 and 1897 DF, p-value: < 2.2e-16

Keep in mind that you can use other bases for your logarithmic transformations. Check out the documentation
for log() for more information.

Why model-predicted values?
When you report the results of a regression model, you should provide a table summarizing the model as well
as some interpretation that renders the model results back into the original, human-intelligible measures and
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units specific to the study.

This was covered in one of the resources I distributed last week (the handout on logistic regression), but I
wanted to bring it back because it is important. Please revisit that handout to see a worked example that
walks through the process. The rest of this text is a bit of a rant about why you should bother to do so.

When is a regression table not enough? In textbook/homework examples, this is not an issue, but in real data
it matters all the time. Recall that the coefficient estimated for any single predictor is the expected change in
the outcome for a 1-unit change in the predictor holding all the other predictors constant. What value are
those other predictors held constant at? Algebraically, the best answer is zero! 2 This is unlikely to be the
most helpful or intuitive way to understand your estimates (for example, what if you have a dichotomous
predictor, what does it mean then?). Once your models get even a little bit complicated (quick, exponentiate
a log-transformed value and tell me what it means!), the regression-table-alone approach becomes arguably
worse than useless.

What is to be done? Provide predicted estimates for real, reasonable examples drawn from your dataset! For
instance, if you were regressing lifetime earnings on a bunch of different predictors including years of education,
gender, race, age, and height, you would, of course, start by showing your readers the table that includes
all of the coefficients, standard errors, etc. Then you chould also provide some specific predicted values for
“prototypical” individuals in your dataset. Regression models usually incorporate earnings as a square-root or
log-transformed measure, so the table of raw model results won’t be easy to interpret. This only gets worse
if you have interactions, polynomial terms, etc. It is far more helpful to translate the model results into
estimates of (for example) how much more/less you would we estimate 30 year old woman of average height
with a college degree to change if they were white vs. asian/pacific islander. These prototypical predicted
values (also sometimes referred to as “marginal effects”) may be presented as specific point-estimates in the
text and/or using a visualization of some sort (e.g., lines plotting the predicted lifetime earnings by race over
the observed range of age. . . ). You can (and should!) even generate confidence intervals around them.

The point that I hope you take away is that just because you produced a regression table with some
p-values and stars in it, your job is not done. You should always do the work to convey your results in a
human-intelligible manner by translating the model back into some model-predicted estimates for reasonable
combinations of your predictor variables. Once you’ve got the hang of that, you should also work on conveying
the uncertainty/confidence around your predictions given the data/model.

2Think about it this way: an ordinary least squares regression equation can be written ŷ = α+ β1x1 + β2x2, when I want to
talk about the change in ŷ associated with a one-unit change in x1, I am essentially taking x2 out of the equation. In other words,
I am acting as if x2 = 0 (and the α = 0, although that’s a separate topic) for the purposes of interpreting the β1 coefficient
directly.
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