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Programming challenges
I’ll start by loading some useful libraries. . .
library(tidyverse)
library(ggfortify)

PC1. Import and update
Following the link and instructions in the problem set itself:
hibbs <- read.table(url("https://github.com/avehtari/ROS-Examples/raw/master/ElectionsEconomy/data/hibbs.dat"), header = TRUE)

hibbs

## year growth vote inc_party_candidate other_candidate
## 1 1952 2.40 44.60 Stevenson Eisenhower
## 2 1956 2.89 57.76 Eisenhower Stevenson
## 3 1960 0.85 49.91 Nixon Kennedy
## 4 1964 4.21 61.34 Johnson Goldwater
## 5 1968 3.02 49.60 Humphrey Nixon
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## 6 1972 3.62 61.79 Nixon McGovern
## 7 1976 1.08 48.95 Ford Carter
## 8 1980 -0.39 44.70 Carter Reagan
## 9 1984 3.86 59.17 Reagan Mondale
## 10 1988 2.27 53.94 Bush, Sr. Dukakis
## 11 1992 0.38 46.55 Bush, Sr. Clinton
## 12 1996 1.04 54.74 Clinton Dole
## 13 2000 2.36 50.27 Gore Bush, Jr.
## 14 2004 1.72 51.24 Bush, Jr. Kerry
## 15 2008 0.10 46.32 McCain Obama
## 16 2012 0.95 52.00 Obama Romney

And here I’ll rbind up that dataset with a new row for 2016. Note that by
newrow <- list(2016, 2, 51.1, "Clinton", "Trump")
hibbs <- rbind(hibbs, newrow)

hibbs

## year growth vote inc_party_candidate other_candidate
## 1 1952 2.40 44.60 Stevenson Eisenhower
## 2 1956 2.89 57.76 Eisenhower Stevenson
## 3 1960 0.85 49.91 Nixon Kennedy
## 4 1964 4.21 61.34 Johnson Goldwater
## 5 1968 3.02 49.60 Humphrey Nixon
## 6 1972 3.62 61.79 Nixon McGovern
## 7 1976 1.08 48.95 Ford Carter
## 8 1980 -0.39 44.70 Carter Reagan
## 9 1984 3.86 59.17 Reagan Mondale
## 10 1988 2.27 53.94 Bush, Sr. Dukakis
## 11 1992 0.38 46.55 Bush, Sr. Clinton
## 12 1996 1.04 54.74 Clinton Dole
## 13 2000 2.36 50.27 Gore Bush, Jr.
## 14 2004 1.72 51.24 Bush, Jr. Kerry
## 15 2008 0.10 46.32 McCain Obama
## 16 2012 0.95 52.00 Obama Romney
## 17 2016 2.00 51.10 Clinton Trump

PC2. Summarize and visualize the data
I’ll start with some basic summary info about the two variables we care about most as well as univariate
boxplots and a bivariate scatterplot.
summary(hibbs$growth)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.390 0.950 2.000 1.904 2.890 4.210
sd(hibbs$growth)

## [1] 1.351453
summary(hibbs$vote)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 44.60 48.95 51.10 52.00 54.74 61.79
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sd(hibbs$vote)

## [1] 5.435781
boxplot(hibbs$growth)
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p <- ggplot(data = hibbs, aes(x = growth, y = vote, label = year)) +
geom_point()

p
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Just to supplement that, I’m going to replace the points with labels for the years.
p + geom_label()
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It’s worth noting that this data looks like a good candidate for linear model. Both variables appear to follow
quite normal distributions and there’s a seemingly clear, positive, linear trend when we plot them against
each other.

PC3. Covariance and correlation

with(hibbs, cov(growth, vote))

## [1] 5.582173
with(hibbs, cor(growth, vote))

## [1] 0.7598722

Note that since this is a bivariate analysis, you could also learn quite a bit by calculating a more formal
hypothesis test and confidence intervals around the correlation. Here’s an example of that. Please see the
documentation for cor.test() for more.
with(hibbs, cor.test(growth, vote))

##
## Pearson's product-moment correlation
##
## data: growth and vote
## t = 4.5271, df = 15, p-value = 0.000401
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4398866 0.9086515
## sample estimates:
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## cor
## 0.7598722

PC4. Fit and summarize a linear model

fit <- lm(vote ~ growth, data = hibbs)
summary(fit)

##
## Call:
## lm(formula = vote ~ growth, data = hibbs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9162 -0.7924 -0.1666 2.2918 5.3804
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.1810 1.5604 29.595 1.02e-14 ***
## growth 3.0563 0.6751 4.527 0.000401 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.65 on 15 degrees of freedom
## Multiple R-squared: 0.5774, Adjusted R-squared: 0.5492
## F-statistic: 20.5 on 1 and 15 DF, p-value: 0.000401

PC5 Assess model fit
For assessing the model fit and the conditions necessary to identify an OLS model, we need a few things.
The first of these are actually recovered from our summary statistics and scatterplot above: the variables
both appear normally distributed and they appear to possess a clear linear trend when plotted against each
other. Onwards to the stuff the problem asks us to visualize.
## These first three just look at the residuals alone
plot(fit$residuals)
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plot(density(fit$residuals))
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boxplot(fit$residuals)
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## This considers residuals against the values of X:
plot(hibbs$growth, fit$residuals)
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## And here's a "quantile-quantile plot"
qqnorm(fit$fitted.values)
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For a prettier/faster version, you might have learned about the autoplot() function (part of the ggfortify
library) from the R tutorial. It does some handy things, including “standardizing” the residuals to facilitate
comparisons across disparate variable scales.
autoplot(fit)

## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
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PC6. Confidence interval for a coefficient
You might have done this by-hand using the formulas from the textbook or using R’s built-in confint()
function that I documented in the R tutorial. Here are examples of each:

First, by hand. You might recall the formula (provided on p. 334 of the textbook) for the confidence interval
of a linear regression coefficient looks like this:

bi ± t∗df × SEbi

I can look up t∗df=15 in the textbook table or calculate it directly before substituting into the equation.
t.star <- qt((1 - .05 / 2), 15)

beta <- coef(summary(fit))["growth", "Estimate"]
se <- coef(summary(fit))["growth", "Std. Error"]

## lower
beta - (t.star * se)

## [1] 1.617368
## upper
beta + (t.star * se)

## [1] 4.495312

Here’s a much faster way to do that using the confint() command directly:
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confint(fit, "growth", level = 0.95)

## 2.5 % 97.5 %
## growth 1.617368 4.495312

PC7. Out-of-sample prediction (interval)
Okay, so what share of the popular would we have expected Donald Trump to receive based solely on the
performance of the economy over the past four years? Again, we can do this by hand using the formulas from
the OpenIntro supplement or we can use some built-in R functions. Again, I’ll demonstrate each.

First, by-hand. The point estimate for a predicted value is the fitted response obtained by entering the new
predictor values into the regression equation from the model. In this case, that would look like the following:

ŷ = 46.18 + (3.05 ∗ 2.5)

R can find that for me:
y.hat <- 46.18 + (3.05 * 2.5)
y.hat

## [1] 53.805

Now I can build the interval using this equation (from the supplement):

ŷ ± t∗df × SEestimate

I’ve already calculated ŷ and t∗15. The formula for the standard error of the estimate (provided in the
OpenIntro supplement) is:

SEestimate =
√
s2

e + s2
e

n
+ (SEbi)2 × (x∗ − x̄)2

The OpenIntro supplement provides further explanation and definitions for each of the terms in this equation.
I’ll calculate and substitute the corresponding values here:
s.e.2 <- var(fit$residuals)
n <- length(hibbs$vote)
sq.dev <- (2.5 - mean(hibbs$growth))^2

## Standard error of the estimate:
se.est <- sqrt(s.e.2 + (s.e.2 / n) + ((se^2) * sq.dev))

## and the interval itself:
## lower
y.hat - (t.star) * se.est

## [1] 46.00746
## upper
y.hat + (t.star) * se.est

## [1] 61.60254

Phew. That was a lot. Let’s do it easier with some built-in functions. Please note that in the R tutorial I
neglected to document the interval="prediction" argument that can be passed to the predict() function.
This makes it quite a bit easier to get what we want in this case:
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new.data <- data.frame(growth = 2.5)

## Here's the fitted value with the corresponding standard error:
pred <- predict(fit, new.data, interval = "prediction")

pred

## fit lwr upr
## 1 53.82184 45.77162 61.87206

At this point, you might note that there are some very slight differences between the predicted values we
calculated by hand versus those returned by the predict() function. Any guesses/suspicions where those
differences might come from?

Statistical questions
SQ1. Interpret the results
In the analysis presented here I fit a regression model estimating incumbent party candidate share of the
popular vote against per-capita economic growth for U.S. presidential elections since (approximately) the end
of World War II (1952-2016).

The dependent variable, incumbent party candidate popular vote share, reflects raw proportions (rather
than, say, share of electoral college votes, which is more directly linked to the electoral outcome) and takes
continuous values between 44.6% and 61.8% (µ = 52%, σ = 5.4). The independent variable, per capital
economic growth, is calculated as a proportion over the four years prior to the election in question. It is
also continuous and ranges between -0.4% and 4.2% (µ = 1.9%, σ = 1.4). Both variables are distributed
approximately normally and, as can be seen in the bivariate scatterplot, appear to have an appoximately
linear relationship to each other. Given these characteristics (normality and bivariate linearity), I fit an
ordinary least-squares regression model to estimate the association between economic growth and popular
vote share. The model estimates a parameter value on economic growth against a null hypothesis of no
association.

The model results indicate a good model fit overall (F = 20.5) that explains a substantial proportion of
the variance in the outcome (R2 = 0.58). The coefficient for growth (b̂ = 3.06, σ = 0.68) indicates that, on
average, a 1% increase in per capita economic growth during the prior term is associated with a little more
than a 3% increase in the incumbent party’s share of the popular vote. The 95% confidence interval around
this parameter estimate falls above zero and ranges between 1.6% and 4.5%, suggesting (together with the
very small p-value returned by the formal null hypothesis test reported in the model summary) that the
data provide strong support for a positive association between these two variables. Put in plainer terms,
per capita economic growth during the preceding presidential term is associated with the incumbent party’s
popular vote share in U.S. presidential elections since World War II, and explains nearly 60% of the variation
in this outcome.1

SQ2. Discuss regression diagnostics
As indicated above, the model diagnostics suggest that ordinary least squares (OLS, a.k.a., a linear model) is
a reasonably good way to model the data here. The residuals appear normally distributed around zero (there
is a slight left-skew induced by a few negative outliers) with approximately constant variance. Among the
handful of outlying points, none seem to exert disproportionate leverage on the overall fit as illustrated in the
QQ-plots and the Residuals vs. Leverage plot (this seems partly due to happenstance as the outliers sort of
balance each other out). At the same time, further work might investigate the largest outlying points to try
and understand why some incumbents might perform substantially worse-than-expected compared against

1We can talk about this in class, but this R2 value is just bananas. By comparison, I’ve never encountered something so
predictive of any outcome in any of the research settings I’ve worked in.
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the baseline expectations informed by economic growth (more on that in Hibb’s work and below when we
talk about the out-of-sample prediction for 2020!). The fact that more of the largest residuals seem to fall
below the fitted values indicates that there might be something else going on in these observations.

Another issue you might mention related to regression diagnostics concerns the (lack of) independence of
the observations. The observations are not independent. They are all observations of an event occurring at
regular intervals in the same geographic region of the world and many of them literally involve the same
politicians across multiple elections. There actually are some analytic approaches to addressing some of these
issues via adjustments to the standard errors and/or more complex modeling approaches. We can discuss
some of these in class.

SQ3. Correlation vs. covariance vs. OLS
Okay, so there are a bunch of things you could say here. I’ll stick to some basic points:

1. All three statistical procedures support the idea of a positive relationship (association) between these
two variables.

2. Some differences between them include: Correlation scales the association to a value between -1 and 1;
Covariance reflects the association in terms of the respective spreads of the two distributions; the OLS
parameter captures the association in terms of the underlying measures (percentages) and the R2 value
reflects the proportion of the variation in the outcome explained by the predictor.

3. Depending on exactly what you’re trying to say about the relationship, each of the three can provide
distinct information. Personally, I prefer the regression model results because I can use them to generate
confidence and predictive intervals in terms that are quite easy to interpret directly.

SQ4. Interpret out-of-sample prediction
Trump seems to have under-performed the model-based prediction by a large, but not unpredictable or
unprecedented degree. While the margin of his popular vote loss seems likely to grow as absentee and other
mail-in ballots continue to be counted and certified, the currently observed popular vote share of 47.6% for
an incumbent party candidate falls within the 95% prediction interval we estimate here. Also, it is worth
noting that Trump’s vote proportion is very much in-line with his previous performance in 2016 (46.1% of
the popular vote in that cycle). We can further consider Trump’s popular vote share in historical perspective
by comparing his relative (under)performance against previous under-performers: Adlai Stevenson in 1952
and Hubert Humphrey in 1968. The model-based residual (error) for the fitted values in these cases is -8.9%
and -5.8% respectively (compared against Trump’s approximate residual of -6.2%). As Hibbs notes in his
initial work on this data, both the Stevenson and Humphrey under-performances came against backdrops of
bloody wars with large-scale losses of American soldiers’ lives (in Korea and Vietnam respectively).

The U.S. has not experienced comparable large-scale fatalities in any current military conflicts, so what
could explain the relative under-performance in Trump’s case? While some might point to Trump’s apparent
disdain for democratic political institutions or frequent violations of widespread American cultural norms
(e.g., his encouragement of White Nationalist terrorist/militia groups), previous incumbent party candidates
(and/or their followers) have embraced similar domestic political and cultural positions (e.g., Nixon, Reagan)
and have not underperformed to the same degree as Trump. Indeed, the factor that differentiates Trump
from these predecessors and appears to far more closely resemble the impact of a deadly war has been the
COVID-19 pandemic.

SQ5. Revisit theory
The theory, to the extent that I described it in the problem set preface, is that economic growth during the
preceding presidential term helps to explain incumbent party popular vote share in U.S. presidential elections
since World War II. The popular vote outcome of President Trump in 2020 falls below the point estimate, but
within the 95% prediction interval predicted from a model fitted on 1952-2016 electoral outcomes. Trump’s
relative under-performance is, in this sense, unsurprising in the context of the model. His share of the popular
vote is aligned with his performance in the most recent presidential election and is not the largest deviation
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from the model fitted values in the dataset. Another possible explanation for his relatively low vote share
as an incumbent is the COVID-19 pandemic, an ongoing mass-casualty event that seems likely to wind up
causing more deaths of U.S. citizens than all the wars of the 20th century combined and that began early in
the final year of his term. Given that mass-casualty events are the other variable in Hibbs’ full model, this
out-of-sample observation seems to fit with Hibbs’ theory quite well, although you might expand his idea of
“peace” to include something like “public health” or “absence of large-scale death.”
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