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Because many people in this course wind up conducting and interpreting logistic regressions, I wanted to
provide a quick overview of how to do that. I strongly recommend this page at UCLA that covers how to
fit and interpret logistic regression as well as how to create model-predicted probabilities with R. In this
document, I’ll show how to do it both manually and with R in a bit less detail and complexity than the
UCLA statistical consulting folks do.

Fitting a logistic model
First, let’s use the built-in mtcars dataset to create a simple logistic regression on whether or not a car will
have greater-than-average gas mileage. This means we’re creating a new, dichotomous version of the mpg
variable that just indicates whether each value is greater or less than the mean of the original mpg distribution.
mako.cars <- mtcars
mako.cars$mpg.gtavg <- mako.cars$mpg > mean(mako.cars$mpg)

Now we can fit a logistic regression in which we regress our dichotomous “better than average gas mileage”
variable on horsepower and number of gears.
m <- glm(mpg.gtavg ~ hp + gear, data=mako.cars, family=binomial("logit"))

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(m)

##
## Call:
## glm(formula = mpg.gtavg ~ hp + gear, family = binomial("logit"),
## data = mako.cars)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.56988 -0.00001 0.00000 0.00843 1.53326
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 26.7692 17.5568 1.525 0.1273
## hp -0.3387 0.1974 -1.716 0.0862 .
## gear 3.2290 2.6792 1.205 0.2281
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 43.8601 on 31 degrees of freedom
## Residual deviance: 5.8697 on 29 degrees of freedom
## AIC: 11.87
##
## Number of Fisher Scoring iterations: 10

As you can see, the standard errors are quite large. That said, we can still intrepret the coefficients for
pedagogical purposes.

Intrepreting Coefficients
Interpret coefficients in logistic regression is different from an ordinary least squares model, but still relatively
straightforward. If we look at the parameter estimate of the variable hp, we can see that the coefficient is
-0.3387. Coefficients in logistic regression are logged odds ratios. The easiest/usual way to intrepret these is to
exponentiate them using the exp() function to turn the coefficient into a normal odds ratio.

For example, if we look at the estimate for hp we would get:
exp(-0.3378)

## [1] 0.7133379

Interpretation: In this case, we could say that our model estimates that a one unit increase in horsepower is
associated with odds of being above average in gas mileage that are 0.71 times as large (i.e., 71% of the odds)
as without the increased horsepower. That’s a pretty substantial change!

Predicted Probabilities By Hand
Odds ratios are way easier to interpret than log-odds ratios, but can still be difficult (unless you come from a
gambling family?). I (and others) always suggest that folks interpret logistical regression in terms of specific
probabilities instead of just in terms of odds ratios.

Converting to probabilities from logistic regression is a bit complicated. The idea is basically that you will
plug numbers into your fitted logistic regression and report the probabilities that your model predicts for what
we might think of as hypothetical — or prototypical — individauls, who you can represent as combinations
of values for the model predictors. Let’s walk through how to do that and then we’ll come back to the
conceptual side of it.

The standard logistic function is:

1
1 + e−k

In other words, to turn the results from our logistic regression above back into a probability, we plug our
model in for k:

1
1 + e−1(β0+β1hp+β2gear)

In our fitted model above, we know that β0 = 26.7692, β1 = −0.3387, β2 = 3.2290. In order to convert these
into probabilities, we use the logistic function. There’s good information on how this works in practice in the
Wikipedia article on logistic regression.

For this example, let’s say your interested in the predicted probabilities for two “prototypical” cars: both
with three gears and one with 100 horsepower and one with 120 horse power. First, lets plug in the numbers:
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26.7692 + (-0.3387 * 100) + (3.2290 * 3) # a car with 100 hp and 3 gears

## [1] 2.5862
26.7692 + (-0.3387 * 120) + (3.2290 * 3) # a car with 120 hp and 3 gears

## [1] -4.1878

These numbers are equivalent to k in the first equation. We can now plug each value for k into that equation
(and remember we have to use negative k):
1/(1+exp(-1*2.5862))

## [1] 0.9299681
1/(1+exp(-1*-4.1878))

## [1] 0.01495267

Interpretation: In other words, our model predicts that a car with three gears and 100 horse power will
have above average mileage 93% of the time and a car with 120 horsepower will have above average mileage
1.5% of the time.

Created predicted probabilities with predict() in R
You can do the same thing in R using the predict() function. First, we make a dataset that includes the
predictor values for the prototypical individuals whose outcomes would like to predict. For example, if I
wanted to represent the two kinds of cars described above, I could do:
prototypical.cars <- data.frame(gear=3, hp=c(100, 120))
prototypical.cars

## gear hp
## 1 3 100
## 2 3 120

If I had more variables, I would need columns for each of them. In general, it’s a good idea to hold any
control variables at the median values observed in the sample for all of my “prototypical” individuals. This
allows me to focus on the predicted change in the outcome associated with a change in just one (or a few) of
my key predictors.

I can now use the predict() function to create a new variable. We use the option type="response" to have
it give us predicted probabilities:
predict(m, prototypical.cars, type="response")

## 1 2
## 0.9296423 0.0148648

These numbers look extremely similar. They’re not exactly the same because of rounding.
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