
Problem set 4: Worked solutions
Statistics and statistical programming

Northwestern University
MTS 525

Aaron Shaw

October 19, 2020

Contents
Programming Challenges 1

PC1. Import . 1
PC2. Compare means . 2
PC3. CI of the mean . 3
PC4. Compare distributions . 5
PC5. Std. dev. of conditional means . 12
PC6. A simulation . 13

Reading Questions 17
RQ1. CIs vs. P-values? . 17
RQ2 Emotional contagion revisited . 17

Programming Challenges
PC1. Import
Load the dataset. As usual, you’ll need to edit this block of code to point at the appropriate file location to
make it work on your machine.
pop <- read.delim(file = url("https://communitydata.science/~ads/teaching/2020/stats/data/week_06/population.tsv"))

Same thing using `read_tsv()`. Notice that it can handle URLs directly.
library(tidyverse)

pop <- read_tsv("https://communitydata.science/~ads/teaching/2020/stats/data/week_06/population.tsv")

head(pop)

A tibble: 6 x 6
x j l k y group
<dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 0.200 1 1 1 1.1 group_01
2 NA 0 1 2 NA group_01
3 0.164 1 0 3 -3.01 group_01
4 3.50 1 1 1 11 group_01
5 0.183 1 0 3 2.55 group_01
6 7.57 0 1 3 21.7 group_01

1

While we’re at it, let’s import the data from Problem Set 2:
Insert an appropriate group number as needed:
ps2 <- read.csv(file = url("https://communitydata.science/~ads/teaching/2020/stats/data/week_04/group_03.csv"), row.names = NULL)

head(ps2)

x j l k y
1 1.794517 1 0 1 9.38
2 0.572927 1 0 2 4.72
3 3.256708 0 1 1 14.27
4 1.009964 0 1 1 6.03
5 0.744927 0 1 1 -2.77
6 6.120917 1 0 2 17.86

PC2. Compare means
Straightforward enough:
mean(pop$x, na.rm = T)

[1] 2.595362
mean(ps2$x, na.rm = T)

[1] 2.845581

Given the structure of the dataset for this week, it’s also no big deal to calculate all of the group means (and
you can compare your answers against these if you like). Notice that I can define and call a function within
my call to tapply():
s.means <- tapply(popx, popgroup, function(x) {

round(mean(x, na.rm = T), 2)
})

s.means

group_01 group_02 group_03 group_04 group_05 group_06 group_07 group_08
2.97 3.10 2.85 2.12 2.72 2.62 2.78 2.09
group_09 group_10 group_11 group_12 group_13 group_14 group_15 group_16
2.84 2.30 2.26 2.55 2.33 2.49 2.71 2.61
group_17 group_18 group_19 group_20
2.69 2.56 2.57 2.74

For anyone who decided to try this using a Tidyverse approach, here’s a way you might do that with a call to
group_by() and summarize():
pop %>%

group_by(group) %>%
summarize(

mean(x, na.rm = T)
)

A tibble: 20 x 2
group `mean(x, na.rm = T)`
<chr> <dbl>
1 group_01 2.97
2 group_02 3.10
3 group_03 2.85

2

4 group_04 2.12
5 group_05 2.72
6 group_06 2.62
7 group_07 2.78
8 group_08 2.09
9 group_09 2.84
10 group_10 2.30
11 group_11 2.26
12 group_12 2.55
13 group_13 2.33
14 group_14 2.49
15 group_15 2.71
16 group_16 2.61
17 group_17 2.69
18 group_18 2.56
19 group_19 2.57
20 group_20 2.74

Knowing that each group was a random sample from the entire population, we might think of the individual
group (sample) means as constructing a sampling distribution of the (population) mean.

PC3. CI of the mean
I’ll do this two ways. First, I can plug in the values from one group sample into the formula for the standard
error and then add/subtract twice the standard error from the mean to find the 95% CI.
se <- sd(ps2$x, na.rm = T) / sqrt(length(ps2$x[!is.na(ps2$x)]))

mean(ps2$x, na.rm = T) - (2 * se) ## lower

[1] 2.298214
mean(ps2$x, na.rm = T) + (2 * se) ## upper

[1] 3.392948

Now, I’ll write a more general function to calculate confidence intervals. Note that my function here takes
an argument for x as well as an alpha argument with a default value of 0.05. The function then goes on to
divide alpha (and it’s complementary probability) by 2. Can you explain why this division step is necessary?
ci <- function(x, alpha = 0.05) {

x <- x[!is.na(x)]
probs <- c(alpha / 2, 1 - alpha / 2)
critical.values <- qnorm(probs, mean = 0, sd = 1)
se <- sd(x) / sqrt(length(x))
return(

round(mean(x) + critical.values * se, 2)
)

}

Here I run the function on the group 3 data
ci(ps2$x)

[1] 2.31 3.38

Again, it’s possible to use tapply() to estimate this for every group:

3

group.confints <- tapply(popx, popgroup, ci)
group.confints

$group_01
[1] 2.46 3.48
##
$group_02
[1] 2.58 3.62
##
$group_03
[1] 2.31 3.38
##
$group_04
[1] 1.71 2.52
##
$group_05
[1] 2.25 3.20
##
$group_06
[1] 2.19 3.06
##
$group_07
[1] 2.29 3.27
##
$group_08
[1] 1.73 2.46
##
$group_09
[1] 2.30 3.38
##
$group_10
[1] 1.95 2.64
##
$group_11
[1] 1.85 2.67
##
$group_12
[1] 2.10 2.99
##
$group_13
[1] 1.92 2.74
##
$group_14
[1] 2.08 2.90
##
$group_15
[1] 2.28 3.14
##
$group_16
[1] 2.17 3.05
##
$group_17
[1] 2.26 3.13
##

4

$group_18
[1] 2.08 3.04
##
$group_19
[1] 2.12 3.03
##
$group_20
[1] 2.31 3.17

Recall that the population mean for x was 2.60. Since the group samples are random samples, we should not
be surprised that the group means are different from the population mean. We should also not be surprised
that the 95% CI for the population mean estimated from at least one of the samples does not include the
true population mean. Recall that our confidence interval is 95%, so we can expect to be wrong about 1/20
times (on average)! In this case, we got unlucky since 2 of our confidence intervals around the sample means
do not include the population mean.

PC4. Compare distributions
I’ll start with the single comparison between the population and my Problem Set 2 sample using base-R
functions:
hist(pop$x)

Histogram of pop$x

pop$x

F
re

qu
en

cy

0 2 4 6 8 10 12

0
10

0
30

0
50

0

hist(ps2$x)

5

Histogram of ps2$x

ps2$x

F
re

qu
en

cy

0 2 4 6 8 10

0
5

10
15

20
25

30

summary(pop$x)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.0000 0.6662 2.1540 2.5954 3.9514 11.2186 100
sd(pop$x, na.rm = T)

[1] 2.248925
summary(ps2$x)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.001016 0.713532 2.098321 2.845581 4.580239 10.425881 5
sd(ps2$x, na.rm = T)

[1] 2.667537

Notice the differences between the shapes of the histograms as well as the summary statistics. In particular,
you might consider that the sample has a larger standard deviation than the population. Given what you
know about this statistic and the conditions under which this data was generated, could it have worked out
otherwise (i.e., could the standard deviation of the population have been larger than that of the sample?).
How?

Moving right along, here’s tapply() code to construct the same comparisons for each group.
tapply(popx, popgroup, summary)

$group_01
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.000836 0.687598 2.468424 2.969925 4.752613 9.229073 5
##
$group_02
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

6

0.07774 0.98868 2.15836 3.10004 4.58581 9.55063 5
##
$group_03
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.001016 0.713532 2.098321 2.845581 4.580239 10.425881 5
##
$group_04
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.01824 0.41583 1.57284 2.11893 3.20552 10.23085 5
##
$group_05
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.009661 0.749035 2.046456 2.724747 4.254075 10.501638 5
##
$group_06
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.001142 0.609075 2.296833 2.623466 3.793058 8.225825 5
##
$group_07
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.000002 0.771873 2.229584 2.784415 4.378727 9.664410 5
##
$group_08
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.003612 0.483745 1.813343 2.093355 3.230280 8.230183 5
##
$group_09
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.007371 0.391076 2.452967 2.837696 4.146285 11.142319 5
##
$group_10
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.008448 0.867873 2.010561 2.295674 3.218866 7.758600 5
##
$group_11
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.000406 0.483762 1.974931 2.262565 3.245490 8.876453 5
##
$group_12
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.001617 0.679982 1.880070 2.545514 4.302193 9.086439 5
##
$group_13
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00668 0.52002 1.96659 2.33019 3.67882 9.05578 5
##
$group_14
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.001154 0.817183 2.127600 2.488783 3.766750 7.420036 5
##
$group_15
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.008581 0.889763 2.407130 2.713708 4.225709 8.307670 5
##

7

$group_16
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.008074 0.693095 2.498012 2.608808 4.091852 10.052089 5
##
$group_17
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.01861 0.77353 2.42977 2.69254 4.01225 8.36492 5
##
$group_18
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.001341 0.443132 1.934615 2.558555 3.924002 11.218583 5
##
$group_19
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.003978 0.798635 2.138282 2.571368 3.721506 10.499781 5
##
$group_20
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.008241 0.902560 2.257811 2.741392 4.005641 8.206326 5
tapply(popx, popgroup, sd, na.rm = T)

group_01 group_02 group_03 group_04 group_05 group_06 group_07 group_08
2.517224 2.578032 2.667537 2.014241 2.384387 2.174388 2.438099 1.819085
group_09 group_10 group_11 group_12 group_13 group_14 group_15 group_16
2.678135 1.705626 2.036020 2.198885 2.040294 2.053329 2.142014 2.170530
group_17 group_18 group_19 group_20
2.167427 2.401010 2.267460 2.148037

And here’s a visual comparison. A ggplot2 “faceted” set of histograms will produce an easy visual comparison
(and also makes for concise code). First I’ll do it in a slightly simplified way:
library(ggplot2)
ggplot(pop, aes(x)) +

geom_histogram() +
labs(title = "Population distribution of X")

Warning: Removed 100 rows containing non-finite values (stat_bin).

8

0

50

100

150

200

0 3 6 9
x

co
un

t
Population distribution of X

ggplot(pop, aes(x)) +
geom_histogram() +
facet_wrap(. ~ group) +
labs(title = "Conditional distributions of X")

Warning: Removed 100 rows containing non-finite values (stat_bin).

9

group_16 group_17 group_18 group_19 group_20

group_11 group_12 group_13 group_14 group_15

group_06 group_07 group_08 group_09 group_10

group_01 group_02 group_03 group_04 group_05

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

x

co
un

t
Conditional distributions of X

It’s possible to see some of the differences there, but it might be helpful to overlay a brightly colored density
plot. In the process, I can also convert the histograms themselves into density plots to make it easier to
directly contrast each group against the population without having to worry about the divergent y-axis
scales. The code below does that by providing a call to after_stat(density) inside the initial plotting
aesthetics and a color argument to geom_density(). For more examples like this, you might search the
phrase “density histogram” online.
library(ggplot2)
ggplot(pop, aes(x, after_stat(density))) +

geom_histogram() +
geom_density(color = "red") +
labs(title = "Population distribution of X")

Warning: Removed 100 rows containing non-finite values (stat_bin).

Warning: Removed 100 rows containing non-finite values (stat_density).

10

0.0

0.1

0.2

0.3

0 3 6 9
x

de
ns

ity
Population distribution of X

ggplot(pop, aes(x, after_stat(density))) +
geom_histogram(aes(x,)) +
facet_wrap(. ~ group) +
geom_density(color = "red") +
labs(title = "Group distributions of X")

Warning: Removed 100 rows containing non-finite values (stat_bin).

Warning: Removed 100 rows containing non-finite values (stat_density).

11

group_16 group_17 group_18 group_19 group_20

group_11 group_12 group_13 group_14 group_15

group_06 group_07 group_08 group_09 group_10

group_01 group_02 group_03 group_04 group_05

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

x

de
ns

ity
Group distributions of X

The conditional distributions all look a little bit different from each other and from the population distribution.
Again, none of this should be shocking given the relationship of the samples to the population.

PC5. Std. dev. of conditional means
I can do this by constructing my vector of group means again and calling sd() on that.
s.means <- tapply(popx, popgroup, mean, na.rm = T)
s.means

group_01 group_02 group_03 group_04 group_05 group_06 group_07 group_08
2.969925 3.100038 2.845581 2.118926 2.724747 2.623466 2.784415 2.093355
group_09 group_10 group_11 group_12 group_13 group_14 group_15 group_16
2.837696 2.295674 2.262565 2.545514 2.330186 2.488783 2.713708 2.608808
group_17 group_18 group_19 group_20
2.692536 2.558555 2.571368 2.741392
sd(s.means)

[1] 0.2695238
This was the standard error from one of the groups that I calculated earlier:
se

[1] 0.2736836

As mentioned earlier, the distribution of sample means drawn from the population is the sampling distribution.
The standard error of the mean estimated from any of the individual groups/samples should be a good
approximation of (but not necessarily equal to!) the standard deviation of the sampling distribution of the
means.

12

PC6. A simulation
Since there’s going to be some randomness in the next few commands, I’ll set a seed value to ensure the
results are reproducible and consistent on other machines.
set.seed(20201019)

(a) Simulate draws from a known distribution

There are a few ways to do this, but one of the most intuitive is to define my vector of possible values and
then sample it repeatedly with replacement.
my.vals <- seq(0, 9)
pop.unif <- sample(my.vals, 10000, replace = TRUE)

(b) Take the mean
mean(pop.unif)

[1] 4.4568
hist(pop.unif)

Histogram of pop.unif

pop.unif

F
re

qu
en

cy

0 2 4 6 8

0
20

0
40

0
60

0
80

0
10

00

(c) Draw samples and describe them

Again, many ways to go about this. A good first step might be to do the sampling part once:
sample(pop.unif, 2, replace = T)

[1] 7 9

Now I can call the mean of that:
mean(sample(pop.unif, 2, replace = T))

[1] 2

13

Now, I want to run that 100 times. I might do that with a for-loop and store the values in a new vector:
sample.means <- 0

for (i in 1:100) {
sample.means[i] <- mean(sample(pop.unif, 2, replace = T))

}

You could also do the same thing by nesting the sampling step inside of a call to sapply() that runs over an
arbitrary index (rep(1, 100) here).
sample.means.2 <- sapply(rep(1, 100), function(x) {

mean(sample(pop.unif, 2))
})

Then I can plot them:
hist(sample.means)

Histogram of sample.means

sample.means

F
re

qu
en

cy

0 2 4 6 8

0
5

10
15

hist(sample.means.2)

14

Histogram of sample.means.2

sample.means.2

F
re

qu
en

cy

0 2 4 6 8

0
5

10
15

20

Note that you certainly didn’t need to do this twice, but having done so provides a nice illustration of
sampling variability!

(d) Draw more samples and describe them too

Same tapply() command as (c) just changing the sample size
hist(sapply(rep(1, 100), function(x) {

mean(sample(pop.unif, 10))
}))

15

Histogram of sapply(rep(1, 100), function(x) {
 mean(sample(pop.unif, 10))

})

sapply(rep(1, 100), function(x) {
 mean(sample(pop.unif, 10))

})

F
re

qu
en

cy

2 3 4 5 6 7

0
5

10
15

20
25

30

hist(sapply(rep(1, 100), function(x) {
mean(sample(pop.unif, 100))

}))

16

Histogram of sapply(rep(1, 100), function(x) {
 mean(sample(pop.unif, 100))

})

sapply(rep(1, 100), function(x) {
 mean(sample(pop.unif, 100))

})

F
re

qu
en

cy

4.0 4.5 5.0

0
5

10
15

20
25

30

Those axis labels are just terrible, but let’s try to focus on the substance of the plots. Some notable things
you might observe include that the sampling distribution of the means approaches normality as each sample
gets larger in size (and this is true whether the population we draw from is uniform, log-normal, or really just
about any other smooth distribution). In this simulation, the number of samples is constant (100), so the
changes in the distribution are solely due to changes in sample size. This is an illustration of some aspects of
the central limit theorem applied to sampling distributions. It is also an illustration of the t-distribution (the
basis for “t-tests” that you’ll read about soon).

Reading Questions
RQ1. CIs vs. P-values?
We’ll discuss this one as a group and I’m eager to hear others’ thoughts. Personally, I am inclined to
agree with Reinhart as I find the focus on p-values somewhat thought-stopping and would prefer to see
researchers and publications embrace reporting standards that yield more intuitive, flexible, uncertain, and
meaningful interpretations of findings in terms of the original measurements/units. Confidence intervals
usually accomplish these goals more effectively than p-values and, in that respect, I like confidence intervals
quite a lot.

RQ2 Emotional contagion revisited
(a) Hypotheses

In my words (or rather formulas since I think that’s less ambiguous), the key pairs of null/alternative
hypotheses look something like the following:

Let ∆ be the parameter estimate for the difference in mean percentage of positive (µpos) and negative (µneg)
words between the experimental and control conditions for the treatments of reduced negative content (Rneg
and reduced positive content (Rpos).

17

For the reduced negative content conditions (the left-hand side of Figure 1), the paper tests:

HRneg10 : ∆µpos = 0

HRneg1a : ∆µpos 6= 0

And:
HRneg20 : ∆µneg

= 0

HRneg2a : ∆µneg
6= 0

Then, for the reduced positive content conditions (the right-hand side of Figure 1), the paper tests:

HRpos10 : ∆µpos = 0

HRpos1a : ∆µpos 6= 0

And:

HRpos20 : ∆µneg = 0

HRpos2a : ∆µneg
6= 0

Note that the theories the authors used to motivate the study imply directions for the alternative hypotheses,
but nothing in the description of the analysis suggests that they used one-tailed tests. I’ve written these all
in terms of undirected two-tailed tests to correspond to the analysis conducted in the paper. That said, given
that the theories correspond to specific directions you might (arguably more accurately) have written the
hypotheses in terms of directed inequalities (e.g., “>” or “<”).

(b) Describing the effects

The authors’ estimates suggest that reduced negative News Feed content causes an increase in the percentage
of positive words and a decrease in the percentage of negative words in subsequent News Feed posts by study
participants (supporting HRneg1a and HRneg2a respectively).

They also find that reduced positive News Feed content causes a decrease in the percentage of negative words
and an increase in the percentage of positive words in subsequent News Feed posts (supporting HRpos1a and
HRpos2a)

(c) Statistical vs. practical significance

Cohen’s d puts estimates of experimental effects in standardized units (much like a Z-score!) in order to help
understand their size relative to the underlying distribution of the dependent variable(s). The d values for
each of the effects estimated in the paper are 0.02, 0.001, 0.02, and 0.008 respectively (in the order presented
in the paper, not in order of the hypotheses above). These are miniscule by the standards of most approaches
to Cohen’s d! However, as the authors’ argue, the treatment itself is quite narrow in scope, suggesting that the
presence of any treatment effect at all is an indication of the underlying phenomenon (emotional contagion).
Personally, I find it difficult to attribute much substantive significance to the results because I’m not even
convinced that tiny shifts in the percentage of positive/negative words used in News Feed updates accurately
index meaningful emotional shifts (I might call it linguistic contagion instead?). That said, I have a hard
time thinking about micro-level psychological processes and I’m probably being overly narrow/skeptical in
my response. Despite these concerns and the ethical considerations that attracted so much public attention, I
consider this a clever, well-executed study and I think it’s quite compelling. I expect many of you will have
different opinions of various kinds and I’m eager to hear about them.

18

	Programming Challenges
	PC1. Import
	PC2. Compare means
	PC3. CI of the mean
	PC4. Compare distributions
	PC5. Std. dev. of conditional means
	PC6. A simulation

	Reading Questions
	RQ1. CIs vs. P-values?
	RQ2 Emotional contagion revisited

