From 18fa58b01b5debbe23d96b30fc08432674d5ad88 Mon Sep 17 00:00:00 2001 From: aaronshaw Date: Thu, 5 Nov 2020 12:27:16 -0600 Subject: [PATCH 1/1] ch7b --- os_exercises/ch7b_exercises_solutions.html | 1679 ++++++++++++++++++++ os_exercises/ch7b_exercises_solutions.pdf | Bin 0 -> 36326 bytes os_exercises/ch7b_exercises_solutions.rmd | 71 + 3 files changed, 1750 insertions(+) create mode 100644 os_exercises/ch7b_exercises_solutions.html create mode 100644 os_exercises/ch7b_exercises_solutions.pdf create mode 100644 os_exercises/ch7b_exercises_solutions.rmd diff --git a/os_exercises/ch7b_exercises_solutions.html b/os_exercises/ch7b_exercises_solutions.html new file mode 100644 index 0000000..74dd6df --- /dev/null +++ b/os_exercises/ch7b_exercises_solutions.html @@ -0,0 +1,1679 @@ + + + + + + + + + + + + + + + +Chapter 7 Textbook exercises (part b) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+
+ +
+ + + + + + + +

All exercises taken from the OpenIntro Statistics textbook, \(4^{th}\) edition, Chapter 7.

+
+

7.42 Work hours and education

+
    +
  1. Hypotheses:
  2. +
+

\(H_0:\) The mean hours worked for the groups are all equal.

+

\[\mu_{<~hs} = \mu_{hs} = \mu_{jc} = \mu_{ba} = \mu_{grad} \] \(H_A:\) The mean hours worked vary by education level. In other words, the means are not equal.

+
    +
  1. Conditions and assumptions necessary for unbiased ANOVA estimates include:
  2. +
+

Independent observations, normal(ish) distributions, and constant(ish) variance. The problem doesn’t say much about the sample to help evaluate the independence of the observations, but it’s definitely less than 10% of the population and is likely a fairly good approximation of a random sample (thereby satisfying the rule of thumb). From the boxplots the distributions all look fairly normal. The standard deviations are also similar. We’ll assume that the conditions are met for the purposes of the test.

+
    +
  1. Working across the rows of the table, we can fill in the blanks:
  2. +
+
    +
  • The degrees of freedom for degree \(= 5-1 = 4\)
    +
  • +
  • The Sum of Squares between degree levels \(= 501.54 \times 4 = 2006.16\)
    +
  • +
  • The F value \(= Sum~Sq~degree / Mean~Sq~residuals = 501.54 / 229.12 = 2.189\)
    +
  • +
  • The degrees of freedom for Residuals \(= 1171-4 = 1167\)
    +
  • +
  • Mean Square Residuals (Error) \(= 267382/1167 = 229.12\)
    +
  • +
  • Total degrees of freedom \(=1172 - 1 = 1171\)
    +
  • +
  • Total Sum of squares \(=2006.16+267382 = 269388.16\)
  • +
+
    +
  1. According to the ANOVA results, we cannot reject the null hypothesis at a \(p ≤0.05\) level, suggesting that the mean number of hours worked per week may be equal across education levels.
  2. +
+
+
+

7.44 Child care hours

+
    +
  1. \(H_0\): Average child care hours is the same for all attainment levels: \(\mu_{College}~=~\mu_{TechOrVoc}~=~\mu_{UMS}~=~\mu_{LMS}~=~\mu_{PS}\) \(H_A\): At least one pair of means are different.

  2. +
  3. Since \(p~>~0.05\), the results fail to reject \(H_0\). The data do not provide convincing evidence of a difference between the average number of hours spent on child care across educational attainment levels.

  4. +
+
+
+

7.46 True/False ANOVA questions

+
    +
  1. False. The ANOVA procedure does not evaluate the pairwise comparisons, but the overall variation across groups.
    +
  2. +
  3. True, otherwise the F-value will not be large enough to reject the null hypothesis.
    +
  4. +
  5. False. It is possible that none of the pairwise comparisons will be significantly different even if the ANOVA rejects the null.
    +
  6. +
  7. Assuming this question is about the Bonferroni correction, False. The correction does not divide \(\alpha\) by the number of groups, but rather the number of pairwise tests. In this case, 4 groups yields \({4}\choose{2} = 6\) pairs, meaning that the corrected value for \(\alpha = 0.05/6 = 0.0083\). Other corrections exist even though they were not discussed in the book (and the Reinhart reading) and they may choose other values for \(\alpha\) or other procedures.
  8. +
+
+ + + +
+
+ +
+ + + + + + + + + + + + + + + + diff --git a/os_exercises/ch7b_exercises_solutions.pdf b/os_exercises/ch7b_exercises_solutions.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f5bb0710be1243162285e4ef97dad8808cf19819 GIT binary patch literal 36326 zcmb4qQ*f@`)@7U>+qTU&ww>(Qwr$%^cFY~ywr$(Clm7myuIh8DPj#KXd1_s)i#66< zbBr;^L#7}iM#n_Y22FN&d-V#<#7@XaXlG~%&BMbWW?}7Y;>aLoZQyJoVq#=xY{DR8 zVr%AXPRPu{&d$dN?d0reVqgR9zCNWn5qsDUw{=4E30f?%h-1D;EPzbd0W(QIT2Ns{ zT|s;OV<)6kfZwdWwd524#uB>KETVY0r`+__ogsU`-yquiW3) z-^~9rWlc`axNXCa|7T8Y2(u-MgZixYtM%tW*2;Zlov)FdK+~(#W%QL}S4WRQ6$cjy zmlv3~*ecrY$g9$*PnTi$u9)K$@m0_Y!#FmYj@984u4kTQ(M^DaZt5WfbU#=ul$N!3 zKh6GYCC+a*N1sK^*R zn;BO0x4sWF^9_-St#KAREePZm=diH&`xfTSH~JJ57wNc_>RWI z3{v%G0h&3=g4LDOx|!pL%EeX}6NJI+t`swThYB^c&@QGGN@ue?M?9L9>%vKfOcEJ1 zK~c&VMPyN>;5a1-o?CYBDF|xDE2Z`*8-;-FeT)C#OBA9m}}8p#i7fVC>Kt^ zipKG>pc?9;h{Yf$w6x;laq`3lI5RY{EXdyj=bc9=L+sOd!BZGw8m5UZ;%(dTYoGui zKPIX&M8tb^l}LwGkiKje%PY03SaE38SyS$X!32|!m>_-I16<_jknutsch=om0bo2u zgXsllw86{vO;>PzLxIY z&l>*b9nxRHaC??I`e9{AP4E~qAm7YTl1%6EDx?h&$C+1JE#}WBb6sfYuU9&i%EvM} z;X9+l=9TW*9zoe_I)~UM=qY2Tq(pfQErC>eWJuj2frw=Xv7uj*)4_FA;g|`$>(KW< zbwDGcr-tcM&GRmCA0Q->f~0Br+Ket)axjUQHB}p-1~;}Lg?Y}Acn4(}MnfQNHili4 z#ek5M``4(}Gr>J;9J)$2GX*hP+<;1l3;3XAgUaTbeY2~_h<9s@PCkjz zz+$I#vZqa^*_Zlv4BP=TV8XxpfE(eIKa5}r`OUAEh#3(I+O~7=q>*Vh{d^M7G19(H z48)1AzC}cVb!?!P7HpRRhAZFi+ZR~t?LpIhu>5jVRQ;-X!6QqU0|a7=F)1N9@f;`V zN`k#rX(kFtzez5bQ=54dA)G4Zgo&vLG!w+kB?GnB4Wsrw&6FX5)h>@23*=vXn6^LT z#rZM0Tk%cAWZwuaY-ClgG_a^IhIkpFyEb^5kIrmL%{EsA|Vky2;)b;Ov{_45WZyZMR;@j>B`&^kn1n zt|ThEytJCen0_uFHlwK-qoJxgOC2wm1|aZyyv>se?pJ0*Q55EsiyKa6uB31F0wZ4> z2hRFPr^xVCb>mrQNiOt8M|5CEzS80HDg4qAovhWcYs`Qx#7esVisB)7$e9vH&+ zH3T9f-%Uu^gE>csRy;39VwQV<^>YfZ=Cdn7A&ZIUe3yhWShp;ii4W$c1>Huw&hI39 z@g2a;fJ{MM3`LDe9<-7$Q zx5>Ea1N^s|x-in1mPOA1HoZD+lTa&Ujm9qo)?qdX{`nz>f&>+cUK9`pZjTJW53bh7PX54G0 zYRQ;WA9PTLbj`3Y2(JZ*)@kwaCL$lPU)OMXg8$_4u4hz}E7C0#FFp|Sr(7jaEf$E6 z>;vadrg@?AT!>wyYo<4<4I`ayRn_VwTV*&oED*NS`DUEr;nrpzf5HRB(RV$bp^}R2 zsdIE@??n8gLx}j-MwIL3ObK4kY;2X&S)>c!Q0i;uvZGR;pPJReVd1hhO@^Aq4{|df zCEOb&P0ieIFiVpF;VtQR&Q5X^DAxJ-55cOybOsNXLX z$rRW??(zeUgrv5Q4$JCXOYAI4jgl)Ld6FG@24Odcp*wo>?DxgquO-bVV?Q`ACt)mL z9L^`6p^ePFyU9_mCjJUFDyUkYglpPQG4`fD%uM%(Y0kSKjwn54K^Dw-lhb%goKGPP z5(;9(>{VI37dgI-JFqg$%^C)Yor!fehULtzXdTUleyK;`^#FZe1004i9!rx2HxoWt zcngW)d;8-b@r~YdYXKU&&op~$49-vrPJGy1vOd#NLO-?Ig~OA;FIHgx1u%UFfxX|1 z$FLO_d78p?-{$)~BTtfzvETzX+P(nG6<;rby8#tL9$k7Sa%{16pcdVpvAqEmi`KH0 z6L>tb7mv7(_*vnY-%$bcq<@QpA3l@{aW&?)z|TkqMu05Y=B#fP?uULidcn+#N%^*+Z@&r|aj4CFodn zk@{!#Kh%qv@xS31&C$E(Pi?Cp-_6mkFUF@dU*tY$75%4~ zZR}Y)Mx}x;`0e~;dwOK`p67Q}WFinX(v7wIEX2&}5oGfa5B(A4HG*To-IcAeJzhVQ zUYJc-$qY=#tqD^sAPx$xoY^_rbt&b+9L`5+I~RDJO7yN>U8d*bjB9#PemNSXV%ilT z1F508ggASs6jsMtg83V_SEs&)|h@B3Mc^|IXK2&Dn9oEPtcbBNu4G-=KpeRiCy`V+F(zUa}Cha1Y4&6|a z&T$}b=8mBR=#;uAllLO)f1qbxNp!rD68+w4yN=T+rh$>~AZH|F7sK~1_8BvuhA6rF- z7-tQ$3a%|KB@?f=i58Lr{_Sa`N~mG#^%*%{<6Xd!XU*mgD~G@NqwCGrr7J?S%oLEQ z8D@z$cR?8=v5AUo@90MfB0<^W{5y_ar*K2>s8w%B&i1CDm|Xo3EISshKyd^MnK_yL zH4xs)=o)5x;B98CGzwNT>egpT0zzJd9GJxlkNicw+f#QYaY#FU?y}9ebC=bYd-6s| zYy!5oTM*yT__1kZ^Im16`S@xII`aez+F)}8aM!QZX!JB&Kcs8yvm)nJ)@SFnUh-z{ zjb}EI?IlDX1#TLHv5NxUas#8;Ox9zozTiKEgk!=dr7 zb3zG6bJD$KreJZ=F4a#iyO`4b)3fszO6oY7(@-n|TgpCC)D{?W%EpbZAzNp=lgI6~ zm;~Wk=oTb^)%W-;c)?WuaxowE*c}`U(W4;)&SY@a2B5|s2Ze#VdwJpud?nmE`gr zjthquRa~|0rHJ)nl1h=Y4{wWxi?r z#VU3>>za2K=d4b1rvd>21pg^_o{^qJ5JM;S98h5$)l*(~5Bzxm)DFk<*HAZhb9cui z#M!OIQJ%^{4)$xETZkwf)-zBw%WPkq7M^I}F=XGOl+OZ10UU$npYFe9bQt;%mYfgg z@h?^5Fr}4?;wi!lvO6=CgWvftoSvaXEG115&h*>xT(ufyreVXyPccAbO${~qI~O{p zIp?s!&OWGr3mXn~9*Ufee9(wTHmcd%Z{B`H_W0Wb~-9&-cBQj6t}h`*{aos;S`i<8lyeHP?!tdCQ1*PS3!YmmXaB0>-o zWtREyZnRtc8eXq%V}Rh4E&^2w%y{pucim@@`^W;jL5?np*bqx#r` zHf;2;^Gk)!aNIDs!23^wNrM~6;I`BoK0dd8OfdX_qTJD#{of6gh55f}pe)Rs|Jpxw z=Jl+C7!iSP-S|cExy9zpzgQ6Sn>dXx*vqfHu;nrSN`}AB+VM|G5}+%*lDVbXNBl_} zQHo4xhjCsgq11!SdjfgY-`sfn$QXGFr_CSu?;2BbA-*<)c%V4~vCkgAc?jMtUS9 z_=I~-ib3P~1N7D}U->_P!SY{$!O8k>U?j?01qmPy-S|fGHYe}?uz@2fRq0!-BPL1P ziHXw;x@b%h?R2->jpf5Y_iSZw*tw3#MO7kxOA!E6^aEbTz=Rt9#}3eYI`0o zs(Bv)>cziS#BGMF<-<>g}s1MbfJM<_|+-}%|o_J75GaKy_ zhj#l03-IFaP0?K+sop2k`+EwP1Eb$uu{(=Ne?*XvJbqCa)L?10N4p4jyP8EVk9{5* z>P*SwCs_GSS_RpRC_nuEFlqD7NTZM>e-IEQ1XY4|f=)J!wFqiM4WKnAv1L;LmdzLpKmMj z=oYbC)F#~yl**XxYxm|&G~G{}zIdIAG~J3fxkiS7BN}!Xx3NWj@ykusj&@fr4$~*0 zP!z+~Dxm#Gc-TPOHROdr1`B%YKU@~J|K_r=FtYqx#n0(j^)sSE?0$SlYIB9MmNgM4 z_gA7oJE2rCx?&_LW7Jwm9EAM%%F5ju2B7C0PMt_zm~NOKNqE)Ip zZ#*~E>=OdlyJ%CkN=jhD@4z}>fj;~7Xn90~cZiBk{V2soAu3NaR1@Ne zmQt^9Uwsk%3BR!@eKX%)7byj@%3L8}?00DYA+j5Tec10s?36I8p@$Ec_kNxW;_GF( z8PswN=-nMD3wQKY*x?!I9fD`8r2q8F{#U*|8{@x8Mw8@?*g{6w&>N3P?P*IkOXOb) zWkUO?WffQWq0^uW65J9C{z{&6EqaCxa1+E$iToRWmz-ndI~ZPDF~$!QkFv#Lj@Qms zi&Z^;#1fL)o!5=B8g*Ev(LXs>Ja5_G^6`Ba)kN8Ue_vg_eq6kGUOwjArObtSe!BZ8 zr+t{&=5Wc!=>nHs58RejOT`6yN`g4TMp>62+X`<{Dqlq1yE?xk*C#Ecxl6Us{A9UsaS${G zoO(x=B%2}fI(>7DM@aoLq7qAs2&ohZ=i|>MV~l{TDE_1){|JzMo}kktQdi0wszRH^ zq=QavoItH(h}@i^MM~zE6i671^)Jw0OhAtKAq^yg!rhY)5(gob)5v3X(;zYpsm8yQ z3#NzQM%^obi73)`L!z@3I|>KvgGRiy_pd$=VGYq6?R_F8jwaA0E+%*b-0Sc=^)v87 z^oKM-OX*(=vOuKadyzyhB1G&LMLu`*_d)RHCCB`xl{&ekHW&w-Fe&t>%rK#)eL5IV zVA&br^qn~2iQuHdY4wembpsh1H%2kd`|pb<16t8ZV^TMaZ&G~Fb83W~I858KZ(V!4 zTGSdB&fhv=zw{e+Um$n-sr~*#&2s!#HOs;DZ#A1J`#)Ve^yWK~wY8sw zLYLN1P9-kH*&${&@Q{^j)QyOXQS|2$GnS2U5faji->Q@V&&S%6(#DlQ+5 zGwu3jgjqIayj4e8kJ%8Xd}yG8(7dX$6{36G5mYY0c0Z1OLb}57)^%gIn27t2Z(j$0 zQqWvqVSXBws6td@EIRFMh+e!9L6^A1&#foyS~jsGGga~M6T?Q92^Mar{~&OS z8mbguGj@;%M4E?^*F-+!j=d$7Wan&!=xhk18GwvP{jejzy($m@ss-(6z!FTk>0S_q z_yu(;1TREK^!^8X;dfXbP;e~R`Qa#GJduDO$W~}*{0s}0f=jp>vU>y&lduY2u&1>t z-viJ|lb5ZIhnl4(XxAUlzGEG8Qr?x8n|F=k9{x9%Ztwqq8{q%ortD(q>|t-hAS@{& zW@qcH^3R%4`2RV@WBa$~z(>_X1!V<4C*DM9>e|La-X^7c>bc9dCd!AtW&+Ri z>p)gF?Eqlc=C_%_;&gNKXXoX^XGa@~C299s-4};)4+$kSZ!d4n=g81b zv&XTo^GO0FSqIq#6^CeyOGKnH_ys0RinN2=Lgw%j&@5rMZmwR+dc&zi6|I<L$hDM#(hLbwazVG(O0%uH$Snd&mM zWU5G-#Bu7(Eb(v*CdXI|`okst1A{lj7 zaq&5PV>%=#>_(yeD-%;P`DW=U*JtVj5KxokDbuwjVrab5p4se1BKz1*vpeNh^~~vZ zcu;1I8M`lc;ESzk0io`=9GZPoD(OafFThTg7t8101gD43hI5{W{LzR~V~RjIYx)#n zW&qql_O+{V5ed4SyRLQ)Ky7hz`fHp-k1z@H2cGDN;Za7TcfPk6=7jfdmo@jDruddD>5ET-qp zHO{Q{DF|2je3RTTaChD20~&5od7dgBwagv)iQT@U6`H)Xz)Zwcx{UrhB)3!lRcv@y z-8NIdo9#S%#rNJ>8QURQyM58AlKX`Nh#LS;{cRzgQwRg&6*?ue_N()@90E^S!P<%C zvB~P5ldX724qVFe>!A1M%uU|dAVVz}T1Z!aDDf_}u>4P<1izFHQu)on7_Hg^Vi4}3 z#DF-bukYOb6nrmHQC@djgXdRK-%>I-ZBdOG<~^$)uBT_Z-m~Qx!?doa9Z#z_Z}0R^ zGb7TQ=&d9%bNh?%l3tBzoWjSPDUw%lsYyH%Dya*65>su1AQJ2juq*6!sh4hOjt}gU zK)1c}mU4qxl#7*YN|Te7+Dy*0Z9L`b&};-xdF+vk4_H%lIBMqLD$e;v=mb`!5WsPI zWpRJy^C-xP0ur>-javTN*(rYPg; z-`nil;jp;Hc7N?YzRSled)U^E+xN>=v3~k*JW@jV&=pP+bcT7u--JaR^+2*RmO)zu zpNwcyiTfkAA`lJ1rtKsvT?Ac5v}MdwI8n$@Ynda5mo^2002BpB~TS z#P)8r$-=XtUj0 zU9;x>TP>U58KgI|ce)t9LEDbc+$O zM$%d&3WFh=`|Dv?l(2K}iB&fVC3A!#$!KZ!W;n9bKW=M>?>8Fcm8*m7?8UQZdeVgg zamj5uL{H4ku*x@AuLmc`B5Q=_)>DfE>I*h!NRfev_CmNKQJg*4y)4r2pALJlgd3%# zxsiUK^MLs-GI={)V{1egLPZ51^*0(jx8`H0gqCik(=#-W!evvgT?dFMikhy^H^{20 ztPZr^a_rh(M$$n!R+h+mm$r28 z1snv>(IqcA#|^I`Kw6K0_lshV5gJ4*80Q31WZTb6gPMnf=(n2@WW>$AvvWIUM*+ym zcpx(zkxEWDB3lIVvO?yDy}}YsMTt5PtkM_^o-p$io&c5MQ@LM<(Eyo% zAiHtn;t8UYPcO=^mX3%B8}7}Aj>&`_68ZWYV~V+~^#3MgtW5uhko~^`RR7AOt@QPG z5g8TqRSa*9)E)dmfsp=yjQ@wN|HVoB|K)ltoJ{}5^{Uii{^5GswW3YDrhHGkF7M5=yui}nSF34nMY77*LruR;aCa3ktM{UzK5MWZpdK&x7M?=4(j zz@NEOiTfS5-Vp}xw#5xBf2GrMQrWTG)lg5a!SZwY^|kZ;bF+a3e|#S4z?l^hK$L3> z_bUghkz5_0fd0?H1sZLP(nttR7Khqw(y3b>x2Q5E94G6UP*huEDb2ynH1FOuS7SJU zHKO!2W3Ma7AnUOu>*RZfDB#2RdF7^jbH_!O^Mns=K!*|jIN%E(bhTqu+B*E;p5Ii9 zIze0llvF8$TCDi#DTnt1)XyVO6$u5c3i)F?hu1Cjp;MuAQVSQen_IP7adPQic-s^F4A@ic%S;X0ep|;X$F2 zxW@#VB42`a^gM+vsl?fV_q5eedlQkaAn8^sv=Y zkM3J}t8F?F+<`kGwsYS;?nGay zTKt?UaG$;@FU;fSx{M4*wB25u8E`L{T~}6Xz}8!ayG#tfm2VNbX6YfjGzPF>@o#!T zn{Lga^^JqPb<3vXbA?JUA3q#{Nbo$fkcs5AZL%l_eoT+o7E zS2{5xdv*$gN5D9W!V}-LJT=??kTfjHMYW}YLf`HTmz!&Xc+v1QJCgLU&~V8b%ID`5 z<>zr?eP6rkTW9BT_lFqs0DX?>%h?Z~R&^2Dx7V6T7(Ex4oMxq9A1__$MTh$4nooLt zJ|3E^ZtI!qDkPiIIk3jo#wi)7lH!$FJ~qmdg#kXGk06M66aVlMI!d|lUo`|+wxh11 z?yw=YyCRUF^X|-_7yXr0`loepb{&&ZmE81QBE+9>D5PM%5ALRm;>svp%yrFJ*+~Vgue89a5;X zVEtxdQ$c7fha+tNU}@%t@fi*?f41E)+p(a0^MN|drPBv51+tk3#*gh50zweVuMT@o zSaO)i2_-D0+-E<4z*h+Et+qftlyim;JQf;C(q6(Hc%2c~iA0R}Jh=ewr9wFp`CFV! z(9(cyOIjkNoA}wR@*JDU*)7FRZ0n{5EBEG1+Hqzngy$p5MZubvmilaJLW_c znUM$^Ni=BdgRoBKIX z*L^Zt1=Si-T1A2X!~lWs@e6dE6D|>LJZwp<1agenryMK#lk2{|6# z7kWjBgOvY#kAO(NQc=z>2A!?uyaTX|MeHgmvTu;W^}tS!{|%x&3kn_ZPp=K|rMFhq zOt~j@5h{?~TD7jKDGd$7KZGltJfnyuTzFkkhh)lXecy;!>o8zh^M=5_6!3=*%{?Jh zkgw^nXdlD-H0Tr#`nZUS16q$I7^CZ!TjInd=w3IMnKn-GJEaj5)7#T%h*l6~=Bvm4 ze%gGLU^MPW*?ra+aDL=`>NE>((YRGX$&34ApZrBo=wac}mN8_Uu%?uN5O1r{%L2Ex zFMhu8MHLfmSKTpDa?yIh3IeP-jy*#p{_|(Zn7^`llYr-QM%7vHm1~U8o||kDU1U0* ze%2V|0EX|*Id~oEtL%rL?)s-28o!&|MTwWUG>5y@(!PE+00)^v2tc*-Ybrt@ls|OC zM4uAKEN2d`vmUlkQkGel`TGtceF-d-%YKdDU;+4)tCJB0J5tGFZgv2QYKYtjSlS|I z4eYd{6*R|F2B5Xqlk`%!XVKv!VqCTUAYFAH zOw+YDPa;7dyJ0TC+tPeK!Suo11M4?DqFs-J@$}}EAQ!I-_>Z`i-o(s0ROs_(MRe+3 zOVJkV8FlMX1u!RZSf?-a52wB|pkRduB(~)nOHb8B4YGgjXlTfyqJM z48*RgTSD{%DuXGAaINa(8Sk8Z2^^!9FAN6gEU!VO zYKf9!f}+xw@BGbzcx7XU-p9cd_sFr0VQG~<#+#H`lT(7;^Tjo8r*O0||6Fh_ps(Ai zdy)e1hnbi@*PgLpM^ohkpbD1R?ZEyAl%k&1o7g@hzX&c5@R~Fo)&es%n=Wp0{%k@K zZtP-_!p3GIYpp{DfH+}w@cfuP@8*AWI73Ax?aVuu;uH~e4M~xR#KQOpo-#2oqmQW0 zzWD*w)Hgc58820uQc#mg6_92VFmPvUEV^*H6+mw?qr2H}_Mgut9nd-CcF|gzCg~8Y zC}KOnv9UUCOTM>mQ7%uNg)1P#Nn`k>rR?ZU)AU_=-F_GUr;ah(Wr{Vu5L^cHA`>w5 zM($(*>~bo-eck+>ej|D4dBfyrKt)Y2Db&66w;nR#>aF-XnDXO9(9n>3e zvF+X4#CQ*C(_+pi%>JR*NJg2AGVmlG@P{L&m1#W}Nt9)H)I=OvMx7!skp*KrFE(y6 z!8BKf1AUduPM$->wq8kUlq*&96x{0aw~Xvrd5kILILm2X4sIX70+Zt6y6JavF;FHA z^;UDsOF#Af(popSfPDlSY&2SQ&9wvM$^1sJX3-%W@17MF+03wb_mQa0Xj)~nurSfz zxj#z33y2``L6u9C6)SD=y@9z$W7B5s5jhKP&uTvz^YGk*+Ws=fF=KG$rHFKkDn{G2 zHJGn6(&3nv;0E8yIE{9GTVciSV`fD5fr~VUQB?O+Rzln|7A~+0pZOSF0R9@XQM=yO zbCtKn1t7s5$4i~vv!N?+7=Dmds~S8BqtmNrJW)Xi`F?$$23q_8F@@-c5M#T^N4|(F z@fB0W3yvM=Ra9Gp7j?2%<&;W1U4xfntJhhUrQLu}=0gZsCb7>vaz1ep}(m>UCY5kB*;*2GQk|>I3dOlA@P_pl{I6OfWa;%;3 z^{diFjyz7^qrmA)rio$_L z3!fzm;Sue4Fa?;^XVj#Wg7uV{V)#ZjJ~Y8$YzeViq$1x+7nEIK#c%n$0*lU{L z>e>#>oT@9`t@tc?ObS|mewP{Ul3vqj<4TDW!EAF<%hHQl)jV>JQKJSqY zmON9jw$cW0wBqpFBlUA3qrnG$)^+03D0j3*r4{tIN)JvVuSVUdz<_6=OZqQK{?i)bZPz@O+r^& zeWFyXBXo32T=0b{b}ns1UDj09;{HMAcpBQxO-s2Au#;%TesXlu7FUcAjq}-c+XGZ! z#(?`DMD%|(oM!&FG|E5vJRTA8cY3RSTv%@qcN8uV85nrqf7tt9hG_r40-cTX-xDw~ z8c^yeE9*IkBJv4*>%s zZ4SYy75&z#lCD@2gHw<(&-zcU{LaY?K(F`beurm0WJ}E zzXWzK>GT@!IdqS|)Dmdi(>9aoP)_~*Mk#{80n}@)Oh&_Tje4b{n_I?FKA(XDhQvWZ z#(eo&#!*|w6Pv~p1BSsJg7x_Z`OJDAd2#)E=*J8X$u()BqT?wE^*|=-D(;7j92sW% z3PrT!GFY@Id?}70n-ogjqUdPtqSeV|AV>A!Ry;f=4+BEK>x%__?`I|2tQRRWXqD*G zz{^$kl*QvzMZsG`s6fR&V62G6Y1+|6W1Ic#7C+G@c*W^-Sk1N_<2-E3ZKyN+(v_M; ztM8$dMB2NW-96Ho2gL)R7_f1|;fA*dLXAjj6ILm$S=rHX!hC{d`%Cl}YUAoMR%xx- zk7K8Xj*VdIhE|cSshVN6BC7gTjdE78t?8QKwc>0BI~naJAs>dC^#jxq(W6834b(Z& z1E`qL&|`)SH|jVqJ5Len5W)7?!2cK`gpr_=5Q|vASHok6eeAmpRt&Y^rg5|H72e8x znvKZ{Nq+7J1L)k!&zHNjTw3fpDm-g>p|f?ezp}Kvo=-E@A1Kl?y51kLw`h7=%x+To z5~^?7$=kl=rb*(Sd|GPC7!uiE9z0LB+$=v3&iu>-PW>B!R}8A6=%DQFK}Y}tP0-DTI?&SAFkXvU3&IpTfu^&4)RaN&+g&Y30hP!;xt5) zKQnqmh6y+#$MnZ&CW%Rhxcl3S38r7v1p2U^!?;N+CWCSHYqi4EC~Gx4)$V>2qOWBB znY|fLQ)SMH^PuD{d?Zw*Vmq%|7q)=i6k!b-_J=5OmUGtZkx@=Uk z>}zp!`8WPVb$(ovE!N08%7x2=v$SxQDLB=NhhmZEImuD+^T0)COKy%g7hp%z1H-WCWBKy7q8#EhWrM+(2b&OYL?FBwN7 zYk-Hkd)_tMlkpvAG49M>Az9isa}n5D9DtOk<~J!q{ThI*1P18$9LreS65RRr_qwpj8qiLY-C;Y92=SC)J#V&HUkg%ADltMaWecN$@m;j; zn2(jyAn;?la&i@QEwrF>|4R=HO-TaYE0C0>lVj*wfA=>CoZi~+~_AZRP(>=^bK`0zEkanJSpmb@CbP3cz*d|pNWLG8}(}Sn)i@3PFIcQd-81d~< z1mED{{v-Q&qfsG>zS9&-n#!-bKI(NZjOq`?$+$4yB8>=vw4xQu$7rq7eK0@It5;Ba z;;cv6hq0|RSYVgR8aWhXc~R6MmEXyz*KgjY2P1!H%!Bi{|K23!&q67&%>tqv0&v~o z2XdmW`7wm$w?#GaH1M&pv9Pc;@ilaGbakilv||0*D7;~&B15fmqIQX+Fg>w~Z4zXC z1M2pWkV5vJ-aO7U)}k#uR~>6)<*;M=@`@7|8Z7`VcEW*Y(RrEN1APlZumI793Vme< zZmN@s4~M}{9jp=cZ!AIdP9(k}!gJv+n&sKQAG-z;k)tER`9)W=+t@T6;e=*_Wk$5K z6)h~r2gC7GirbIJ{*gWj)*?yOO%axi*)@EF_QfBT@^daz+#F8U&#rlKX#JeRqo)s> zKJaq;BKEt&uMudmwV73he_&0eQ;-i!RN4wPSg~)JVWhh$@J%571~m;5l$aH(FsGwK z#u$>+r~?YAd6BewHOUMZp>H^U+CilB)OuYc)d+>9@;gLTTrkL+dZG{Mm8BAO8>DAo zp>Sc4&)|H$uvM%_6=!wj`>-R1V5M>^J%Zl}OXq}xX`VjpB?Quh6|^Vm13`-@6+yy^ zcN(sXb4`gnVJ-}DNYh<|gTg`#@m^|~;JHWBe zN(lU`bB>yk56=?_TVg{(KL!~zYG`wlTV23dkV>RS4Ro5hrFZQsAPu3_G2G$pd8YfI zUYO~KPglPWK$#lXJSA~HtyZQ#%&!O`kQUHd=41^UuxU}_5u_$xzexmIa*qlk*4{5Y z(YO7P;a!5{2HnKt@L5lS4!y|*ad2viRKS^1mfpyYgh0-~9w=kuB9Z!%RtCKpvxtxQ z4mps?2z|s8r*)N1y~Po${fAI4ho?*n(2$)Lpk`$_a>3e5R{HS~od8txl6kQ=reWHL zS`ccvyeg^+5P}*)88oV8%KfQJ z6Sa*oJ#ZVgg)2gBbEFT|sN-GTh|7E!L}~B6p3$^j8fvPnF)UxM2AQxZ=3pdm=qsDk zhD(7Shn7yS9VXXd`dUb#;lOcarJPvpdU~=DWqpgqHU?@4P_$BBgj#&w3=XW^k7kCL z5>02_MC?=^BfV4#d7DG&tuaX%&h(~{ZZ30To+y7_KwXurlnt0!(7?yz~xmK=|TCw-GYt#T_6J!1e0RlBID!@pi%Y+ z`Hrpp+O3s?dd5^g72Jf(D#)RV-q5U%%sFf#)`zt6?~xo8w-fT+yC5Bynw{H@z$ot{ zLZ>Io(cxZjrSh7xgc$0ogK!IY*^6u_uvRAxU9t~(q@~srZSC~~nI=DXPQ={484*QX zaADvzp6;GfS)IzIPwz4DEPX>8w0V$za5+Dd3Epbn2(*c5;kH5PUDhRxG^O;se!n76 z-jJjL3p9ypw1}Z)ARkpFZTMsF(IV#0J7M*NJL#^Iyde^2eQJ0JR}bv9UWEFG`pE;DRjK$MFb9awWO|^ zz`zN}J-aW2Gn|l(?#*N4`aSbkNKZHDm{GIxPd>!q#u}tULj%Xc^`FkPkh&g}!xi({ zT)f6dyNUpw=V#B?pQUI#vG(!8$Xq2d{cu_GqhE`%VeJ{a-zQHh)=2{d#j`juh?Ek8E8uUo)*#5=4wasHlkZjAqy{>%=(aAHOl6&#RNL1+4uqHaEpxn0ftz+UA&VXJ~X zTcGk0WX3>>xYWx6B!Y;CS}oePeoEH4b-Fj`3i;#2?S-MQ5W#XeG^xoSs6>Sf!yH|M5NkynIsI1G)H7=RE$@iBulVsdPgryw6rvnWqTF# z8qw7@)bxyw?eYxD0peMc>CTb3YR;04D~}=8gaE+?O}#x!h~+CpbrYwJ`3_2;rjWI4 z{ju_fKkN`t0?u_PaK{^9qWe-SU<{0I-po_mn$zaq_dW?-svBHUbr_M@;^2L_oS-tOC zEI~M*h5w6c7zBn)%sfIeqF_kMT`Q`FlhrLG=5U_}Ztj@Q!NDr^TxQGM*16a7+jDyM(e1`3_O)vEiaUB zd{tahvLX02H7{lpIbryQRx{}m`O+k@x8bd3Rb9~qpNj-`H3Q>Vi48!7T&(|<3Wq2> z(jjIp8>3{kb5+u3P%ev8BK;Et4McT}ku^~ji~a~_qP|wk-gSm>E&Nk9BW1z!maR

Yl{93MD5rj(@w&d)WppmHu@R=4QijA-$ z5Jm?hJwI9;L3C9BUo`D1P%BhY6BmRC?3uTXvwZ)6;irT0+{bu)MvUW|)}?Hu1of1u zj3#P9Mp*GVM1We zH@xuO=JshwsYpYq2%C&m$|!LN$&H)e#;tAmYXj(i*LSmzL$S>k?4kpaqYX{j}dU-*gk2P9wFapN}63^q*bZN}S zkWOdkJIL1QYKan4Ae9g%!oj~X zX9K#LEd}k;-J?B_2L`yh* zL(8T|5<&?>#Colp`k7H|bj2>7yKTtg>>fmu-9K~?s^;g3-Ecxvamnf!urG}EW#w#Z zK>;~wO!JJm&4?j;vf43VGtJoRdjA!(it>kpW_Mk`Cu!znOrK*mJ%*x^J6PIZj(hU& zq!b7N_lLKqn=lN>p5E+X2pX`C&dR#q$oGt_Cn)3t9H2~)xLQH}1>M0)<7V7?5Rw#&{H(FxZAjI4vD@yqxHiXP0LNU9nZVgiAe&zW` zVxqOUiu&(6TAu0#3Cmsxz4-+{{|dl%aJ4?BbuNwX?5~NAcW!shMF7=3;y^jnarPuG zKXeMYB~h=9WL2rs6zyO0e!k#R*JBKY~Di{ot+X z-TKss`gbAUjdr5#5yOA8QgR9px{;<@{3$14z$Xa)gG}4OCY_%prOFa;=r280JW8NI z5qN-0bRxCQOl9+fl+{ByQzg2kLC3nJB%o?TtuQJw8g63;$Kh95+1i>D==`4fRvLw7 z3`jd5lQO!xM`YCl%?wI(1KXdnE7^(ck^6qKL0I`d4I%N1=|As2IGyg zw{BZ%y=5GZ)~tzVaH4PZg8O>gPDuNR-H=VS}Dgm9UNCKoRv zcZD!UG})gQ6gjK#Mb6j<`TaW$i8)w!`zO-F<7uL>Jujg!#OeZ0SH=gUl#z-$8AF#x zLaG2EFo-~o=cDZXZ)271{_`8iWcafi8PFa&3c0*H-mqIED`TKe@;xqCFQ5WgFW$&P zkdBU!8&7Bd?_u7Dh$`e!^;*bHL7UnLdU`7AHRss|&lc>nM!d+3f3qWwBM0$rx~S23-S4NxBlR5O!PPV&@Ru-*I+kBm~6}M zW&0rO)X+R-Na4l>8syT>0`p8Kw!`h9YyaY~5z7Yq3`6D&dQNVw?5T@#*M^Opw7l!> zyMGFo4g7yoSO1SDhyR(WV`ln4n7Rap23a`2*0b*sbankw1_3}~V8#GQfU*mnvT`d)uujRRl%G7rJ(y8!ZGqDXFZ$ zB_$vTGe&p_cz_@wNsdDjz#;8Pggih}%OOxlR4s2V-z?m_b#ZHN>T)+X=G-=2=S}OI zyV)0SuWzqs=B_)P=XqbZo#%gl_kO?6el;aDFouj8^<<|uU9SZ`y1psFQOH66#y&Jk zVhI+qus_j;YDv}t@#G94Mj0rs14WrA*M}bDlQ)O@pV1Z+dt58(tv}j$`H+_H*E{E^ zLJU=DB3*v!`;BSO!l0quuZHb@_pBwRqY=;?n;xTrh_4dt5wb)-=QFuSp$Iu9NzklG zu#!SLK0IW*Q>TzpRg&lnlZ}kqYvEtECw3oBmNM)mk{KIID$$}PzhlMzt%b#A(UQy&BHc(BuTiw8$k8v^ zMfjk1lh?8`yZ$NJiL3-iK4Rg5%`8_)Bx)2Rpj8?FUfNd)y(}p}Fx-?f!A%Od7I7n_ zl;BDVG$G=Q06-*CVhcuFB1(ururrK6eou4FadjRfWDCz7#)C@^;XR0PD(?I_qb7p! zqgtK+IEBmpJIv}+51B!2%Vx{!r%=B|KPnfPXU1;f`ikUkz+T>mxy-pRr&O+JmbSWn z@0eSo8n$5L#n_t{x5f^g)Z}=qsXE|v8uKsEGCI;YESA+RWACv@}4-4}}uERS5(eBq)e4O;~2cY9bjQmmT zrM7HMWFZop-uB(gZyM+PpkK@$7}Nt1-46G6?qF1Go}x5{GMIp49IB~K`NHPS6uf@{ zBuY783p}8^4>TNubp-Ri1MAi(SMSe)1qd3Ex&bPbGmg-V4x|*-_Wn~RpMq6wZG$GH z*U2NJTwvwY6P%g~s1(et7CWQYAR`-_9q#D1Y(a41YddV+bHkwp26B#gdQ!9(RH*g-^;ZrIj23s`W%oF~W8;`7dpnPWOH)lqP zhI3QQpA)qbAQwIA?!Cx8>$?mnBR~T76iwGOCL?g)P-Sh~>c%24`S*)4HurFB{Lt)N zKlSpZ{-O(}hW2OLYpcAsZm`+y-CvgxxtKbJcrn}26oo$ z&|>_BBk>!~zA9Y!cD~>7E+n)C&X&Zwa`oO)L#g+=8Q`rASbI)^{gOiU960ey*T*4G zxEf!B;S4@am`Se&AP-Md>HR-IpF880EK*+x+JtoMyT;0N7{~s(e(sO)BRZeeDdG;4 z$HOc4usn_-`Ng`_(!^E%L zPQ!>l`io_YaVHWbPCji+-HOlrjn!bLW}t%3`R3VBvTBL8qN=2SGILq&ipu8~xElAxio34sFgL0d&}~1%~h+>2vqDs;Qh28k*s^^`i#vOP&#L zhG6Hp$Ajt%pCC^fFt*UOwxSXNi)Qrc2rV;BsYQ@@Ld-}{;*2hHyl+BC}VYUUF>Ywby) z{N3`@f(QHl#0KN>{a5oGUO0R^cSj%9g03bu6f|)Q#`0C0W~~LQ^3jvFHBa7-dPatQ zTP+WZb2H9hFA@`B6fq_ZHq5Uz{DBVcC78y;y1|Jn8!Oc9iQmH;H$&h$2T7hI3-z;H za9&}tMEG<~87X2bhg7##P^@wCP-4j^qJu7C{_fJd+A(@8@|bXiOs7vR+ptF`Our3C zI-r)~qDqNkidnhbR3DH%oG`@Xna=kR!@p4kJW4YjzrbuIelsWoYDPox>BqMm0hEI7 zS3YHLusNqZr)}>TNUDKMM%?ZYV!zUt3YgIt$)ZnWb7*#zfag@$0@M!y-Pw32>ojRh zyk1W>w=?bO`Xgo)Ng7gyJrrdK0)ALjP*g;%epc=9RaaWyIzEmXWkKx__e0;&^`W1* zG5#6WCAGVwN3iXT#_qb!I~#(ofBl3!)8=iDe}UIS|6=~%VTAQRDE$99j4=J5VPxL` zLBT-6fOGJE01yDd3K;aiS@}QEg#XtF!okGyU)&3&T96*fD{XcX^4)`2g@jQ+lBP(h z3kOsL|6HJt1Wf63w6wU%Z5J7hm}+5W7D;omygrKKoS3a1N!f(il(Jx~;Sy&i+U zmvwjE+_l3e-Se-v-t}kFUUQQh-t`y1Yg%VGaryoI_~FBdwRx{|RjkzdI!I)3(mGiv zn5kJEEHXIUj;bm#B!o08?vq4rAlyhnAvJ&EQ61M0fY%Y|xM%Whpbp!>-+#rwBftfT z^WGdsj@&a7{rqx@<^S9PQisQ2Bw?~d-SWLU|H0VH6csf71_FC?{0e)IeZszaMLH9m z!}f1F&zUH>uMkaCj6CFMbg@;j($Y~fnpl=x(#vI|r_{{CLPw^C^R%2=PA8Kq*{cr` zAukPknnhXUSB!~vlE(#k|eAit<+S6MATe-OK2F8 z*vmw9G>r7^505Fo3K1U-BNYiJ5e=`2)IukcES?S@DIt?gTFT2uX(D5zqa`7xWaSI_ zk&l&%fRc`mf=MJ(Xk8TpO(;uWR!cFAvE0UG*SWE<(0eLMVT;uqZvAUI|k>+ z{~>mGAJFQ6YU zCT^j^As31P_Vb4A+#wlynCDx_4-@3~3C>r9==Gd5782ExGBVQAGBuLc78RA22!F?L zt%uJxJFchlMt)dP3aI{2A$I=aTVwRXwG;sF)%^RUDx3_v|IS}y03*&Ai10Wfxy>`Q zliQND>7F!gKa2-;=-v0aKAC+jOAQ-z%E(6Iqx2ITl*s^Wo>g|A-(>ziiUAIY8z5KB z-DAt8?}1wTb0r5j6BgPu%89IIy9bomP^9K1?*?@{AjtuazaFQuKVG+P4R{j(UxIoR ztu{=fA(ReAzjb-Ce>|=8(n{X@5UAW5r-tZF)BqM^bnwsfDa=z4G9bkz?T&j%3mLO; zDvvrw4#JY%7vk3C3puN`$C7^t{?AMb%l8HlzAIOI!f&uQ>I_;52)dMqCUt(`fQ`7(cNnAyCz#b{`@`R%X2hejrUO-vm0v$ zaWI}-Sx}9T|FT=o?-00gIXW?>kIQcLS!HuK3vOTBad1FBhUf+7b7&o~T(HW6K*6t zvW*CsU6oapN(KW+z)9I4aw1TGnldUxjUj6uRowJCW*YjjAT1;t*WI+R z=SJ=Nb!AF{AqPqlqGHVQR}bmj^9v4-eB+mAg)ktlnUC7&^KlNuNE>)jzC^M_*9mv( z*nApZQ-Jy$=tfBuALd#YFjmW-+x=*v40f(rRr5ZDOHX})K}L`TI0&38trVzihz(f- zGNx+Hcjc^2tKKhSivc*4*E1?hI@pSU7*mS2-Drn@L4$+`9a3CU+(LAAeW;ydhJYWh z#^^?lQ8)qaC_jU&dKGjeue(CQKgKW5>L(09+t{s$o2j}k8oi15y(nD;-nj?tdR%;< zoR`gKmV{6`N{f??`&wPzq#60OGCi!WHstYo`PqUG$#{P`l_&Zse|+!-tclw0;6Y0q zT+5t|&B|2>lk4AeRD65rd_9eP(^q|l0&zC$XTMqTG`E8~5LxP^@3J76G2zM7-7?h7 zx1e?Bt2Y~0c_r?1hwp`y)^aUCP zPwH97R)=cd*ERktH}YG#w5o6_OPy$9uP)N(OY#Mch-QF?7kDI^d5&nt3XWmU`HF})(=+e}<%6V1Ha1HwkEH?IvPc&B%5auHtXXwq6TrEsTu zXxNmJpjIYQW8bf)wwiP*!1Lw8owqz!2=Xh;|Neu7aL--%3Ig(k$f0@lTi*ZRb$Uc2 zm@b$=CvHe{*} zsurk9Gy@Jh;f(m+<4!%o@I~*i))K%mkxwTR2RT5W@eqw=Aqi&2#o-=h2l97*-Ucy& zX~6UvAPhZ!VFZeYql@ru;#K3}X2?557}xh6;}sT@A_uV0npAr~?D=oq5_dd~B`aY*c2JW*o)lGSgGI#C_e6oQ?B@8C9Mk;Wd8syYF{Y-zmrGkqlcgF9yPm2^~dC&_2?1MLv}Ki8&ED}(j_zK3@5 zf{L=jn$nz9AH9X{M&q}2?}1(BLoV*87C|2vBPt?;5~(Sw$qC)009ZrI!96*4+8rNl z>8^&-K?1;!b+>#74fhsbFkM=42wWde0ZjvNa)3MjCRs#D12`MV?Iy)gLX)N}8ff~C z#cn4%0MiYR-%Cy|R9T-@xqUjBy|(>LExp4!9i(P)XrkcGe>lw5o12%Jrv?g#X%S*l zkp>|XqYQ@0#HFIpR1?gs(=lHY#oh90&A~>N|=>2R~9gHK}v}pFrs16_#@tdmmdIH z5|}t{ewhw5_1+$Scwj?~x~%c!*k3?|HyzL(E}Uw2Pe~h2Lx_o%0OU0>FVdT{3vb?J zj%nKpr&LiZ4rVe%z`Q3n-dUh?x14@Sqm}So2GhSbG(p^SSZ=K-n5S3OU}0NCX2Et7 zko%`-2e9JLiaA!QMXI106nV#|lif*Q zG{;#|ao(@*{1R_8C|Ry5Aq_w;A3wUS&S;5Culgq(0$&0F62!4%hM&h{Ah6NwZ5+)P@!1D@9gkSGiGuFwHOjX^AMgc+$ zm^mYteU4`H6Y)-RfOr5N2!2=(hMf4VOl6w7ImUjK*j+mFq#H+A2Mk}g?`V7byj`iU zP=xx#pe#9hcOgU!nNy~bY;xyj*z`q*{^9ERFt9FINIg8BC+?k>cpOD5`^k_hnIS zjmNg{KQJpRrLv~9bP+4>lxIIGo~zuyJgLV@>vz@jg<;<1O@!Ta=t99makI?U-~<$0qG~hG#e2A=7X6o1FcTG?vv^VbOBs zYJH4(4g~mSKt|90fXD^6AG2`b`~gUh1+S)KLCXsWaddDA*GVW5g2OelsUTZo^Ev zX6a|!#C2^!qDWOGkv=R%JgCKd4e@}`>C$q7GNkJcVpOmLpw4QO0RUZAz-mdXF7meF5T7Yp%rECE*^^_24BFX{; z3q=|$fV5q0+QOuDV?JCpw@$YX*qX{>eB+e&k?t_9g9x}47$(5Di~$8rZGmTb9d0fR z?ES7X*;(ghH?Qt5uw3pqxB2#N?YFkBXY8)-;%-2P6aGrfWd@uDdnHu7cB#9WE6G}^ z`Vd;#g1FJZA+6)UQ{xCNYo3`1MVT~qT6+(9_!KGfK6*&ktpKK5lD`rU6UGC%sjm`Z4t=WQF}XdWx_Rq@&T{!oAw&io5dzrMK#HZ zTZ$+mQT(65*ES1AblYCpV^GQ3TBy7si?I{#h+rm=cRwN+LjzR|h-sB-k%eWiPC~ANfwRhr-s3@^li*_$eqAN*euD(US_Gxe`)Slmjq*$`vJn4(`rbb$t=CRdd#+& zZTTjUi((dhU5`LA7$xOqqGYw&4)N~Nv68 zL4V7^_$yQ)X*1hi=CvdZOlizF!x)-j>A|{!^GCe`G`K2hqT~k*q=Z5p?>Mc?T1soA zM_qT4hO*=WowKB&>jE7X z@rjF&RSHTk6WlDBI7Tm-(U^`0{IPc-YMf`?O0GNGiz35sKzsCHA+L?0rKpo4mEwx;rz+_=A22 zZ+I05>3agL4kTB08(8nm&yYp6%c@M)=rWWj-Q~%P-^55Cc7Br(@!A<6EO(}^vV?By zu#WtOdwW^pm@Z_8t|wTmgk=Py5HCmc6x7W*7hcR(L70p=i<9dM6jX~&f`yDzdIca| z7B)ccGV{p?l`bbi`pPL%qDKv40@1+28`tn~Bql9y5!zfR{`#evIClHlV;*RbP^~PT z$^w@Fp}6y&3Ci3`eiAu_28)Q`R*lPFEIcW^VQ5kD{k)@b`g-5Y4boBF1R;R5LmS@B)E~mGk)KOJM94oJ}=k^eiBR7mXB%Y1*9gFf#r04 zG-2pyZ4TaM?M`0BbqQ$=akv{cSJ2Dr3dq8iLk$^GLm;FluqZx&=uVIWa}9faZzu4C zc8Ki)`Z=^nLe2Ctaposz7#XgTOeTOzXMrT?ZZNJoq$yWbuHv{dE`U@r@WgU&-WVde za-U?hL(hafVL=ij!h*D-IWsLO$dTq#a20^)jm(e{dz)v}YWDRDKJ+m$6$=R-4#L?-!sxUg*_MPiqX>;f=3 z3oF0Z4xyHH3E{#FIYkS)=hRqD`|RvBK@if@<- zsL)j+Jvyk2#pgT7=HBr)jQx*ZbPUX)?p22N$0xN#B%2~LBqplg7`@Ec)b?$1BA7$w z*`W>WfH2u9k83fNhs+lhGQ1$~JvdZi#CHY(@ps>D2h{K3JK7;8G%lYEpwd6ce1blB z-}&0lptOnKd^Sm$lqCFMCJL;Mxqe2%hP|vUK1nJoRvPOil}!Wunc%iyxoz`(Y76aR5n zpWLEz=VklU>`7VLbcT1L7AO8|%?Ipn6~2gx;cPWVMR4?#`d}eOh7gbdn{Fo=L|Db{ zVl7mBQ)2oi46;*8NExwZzotNt9`Bm;r%;6x=Vd*!zsmxjyi_IA?)9YTPh7DmwZz#N zKkiacgZ3FV}}J9^QHg zD4#*S=^!ORa4HuTke<O^_R#s09@rLSopAEsYTOebRtFo73;) zP4_N?q5)lIen2SQ5W6a1U=FnaG!5ZN-=(`;Og|BzLOF+i%F1y+O(OP$te#Y0a@b+< zz&^bTxhot~F|HKbYXlnWTeA2>QOJbeHnUaCqd+{hLb41*ht>>(5zbEj0n2Sfw%1N*!ikT2{%^k)#YEtOr1MfnAT>YomK%9}*NsJ@@x z&ihn>or-uLVv+b$ve>d*9wt;aJ43yiEh@|9&37zNCq*|ccHF!>Ls=8Mu;E+FSj7*f zmOsPihC(*vL*-0G!(9FXKTiu5e*RB89!d$}OwpOK1bYcp5g=r(2x%0&kt}nSShh)Q zRz7GLAT?5*;H{Au?)<^*_Ez_kwU#QL%p9v6OU3DLd>X|d0hpRiR>h^h&C+@O+Saa0!%tWrj8@^A z?!9AMcccQF<%b3>P^^5>YJsddSCK@5nIsd+MC3;;A}oWe6EY0zA>jJicNH$h;{Zry zwjh+w-Y2hvvpf2}Pt>OO%3D~0z8|;*PlwP4UKqKh{Kxa!6h=&$5q3iemem-nr%tBy zTe&XpMSGcN?z=zOAv)3HFOkw9O36Y>di+?f_P^_|TK)*pqsKuk9AJplxV>Ix ztHJMxON)l&CNTMr)!xNmOes(d>aA|B_YQ5qrW+X@%0t-{Z^w&Wak%p-8C}P?X(~Sy z4ODm%QiNQ&%3O{NSP;so;1?hVFzjf?lCR%dpxwOS)W@f5t0aY3Zn6k;`7xDeXLqN| zuQ)UHE-5_%A|ld4b-7-d&}`3(Z(~CFkM5`bw`=7YY@odKLB3_B@)e2&>ZHjJ`y8M? zgn&Opfw)n@kOg}u0$O9Ze=8#q^Mw2_IDcKiOVrDLCEi>(`~4iRzfr>p!U9~rBC#r0 zd{HwXUWXZvl4EC`2R}AiqvthM^@PHi;nsaVS z7MC`uB9R`&#^vB6Z_NO5&zau3tIiMXFSi@`XUqWlP|NJx%(98u$~bGEcq*1q9?^Wl zf-xOUH{m9D?#k@$HK}OrMzpD6)p13~pYvK2=WN1x5?11$V6F02uqZ{@GHPNezlyW;)a-&3eL-;D=T3ubold;EZ^wTY4DAz|W+R9ea~stUU2 zRC`xXw|)@g7QCy7I{{5Pk)zoLbTzRNyHR|DAf}$GlaZ5>lN)l8;u?DjYXpbQ3nSDVU6r<+2Xtgb z+dW1Mkhum7n$lMCF8Q2-TX5cJrt+C|>iPkC*C))H(5rPi2g1#YW_8Y+Rs|*V^pKR3 z4~n*x2s1In)O& zOg%GYA)?{Sugh2WifQlcR;?Z;`x8i%mre57`<@=wCcso_dBqN^9CT-X$wM59zA7`A z#vQSD)PSo)FuXoH&o9NXg(wY7oblzwa<)`p28SOo4q4IyNlfG8f2b`-ojhCx+Q~Y= zx~YHF-n`{8lV83JA+DptIwRQk5$EO}9JsU|WT(Vm*Yp>7%dT)uC221TuSv_(Q%e=U z$)K8(M-n@$e?<9NX-BbGZF#9Ubrn^|mYG(EMCDdSl(7(GV#$XwW%0ODsmdtP(U+2n zmF}onws3IKwpQf5*nmktuZ;;6*B%%s#}2FMcZRQ;wSG+Xc!>HTNhFrgly`ZFi-sq( ztK43^fyMW&UPAW0>CSQTJZ?A5TSRxk{*rk3=XqmhCW!zchal*ts^#dXE7o!5%X6<# z&35`!*`?7?(Xc8t0sbWfQrj5icFWjlZPBew&f*RZCy%j=q}CiZw-{+R<{?iQ?kMWlHE!IzU3ZX~IEzn2@ zuXorOysi#9FPNgXr#59ziaeg;(5hGaQW~>=iw5qM5V!p*Q7p`X{H8R;^y?g^T%%^2a8rD+YVj+AhN!)L4ZoUkXh}~|8X{v)enS?IpG%R% zd*FiRoeL&y-CgbnlCqQDtf?$_tv9s~1fOZEC3E8WxA#8vPq1d;;IY^jXJ_o;ez9ku zuPQL6zhnstu2T*~96W#|+Xxgm$NglK76q&p2q3(xd=s|xEZMoCX$1u@~dM5wv{4U_O6N`wEIc3}N4?1Ap8(*TlYyau#XxnMXrbZi zHo8I_*p}x{?IjE_IEjNK0}}+p!NT|m15W?|F#ui^1n+;d`+tC+|F1*@Gvj{+LVeYt zb&$>5@-di#F_fne{uowsx)CRo%6_d4>C*e%yk3+qZ6i+?e_&zxwXD&wS2u ze&6%oO+w<~36m#**lM>hn#t%)p0oBa7F#i!&qBnoo+5WMPYyvGiIkd%q$6@Y}52%EJrvT}~j%tuCKa8G~w#KprL8MkaL!k{T@ zQPs~%92*b4u^N791&dBUyf=Jaam8 zHatA5IcW%H?BtQuGKNy;-!*}9n+hGP*Um=g@;p_MzBbl}W43F0nhYbxr)a)fb}4K4 zdq+p83&R+gAsK>jFoI*m_khzF5N6t^$wn*;N z?xB~-X;|WHg4=Jol=ODS&9P{!ANV){fa#-UeW}KdO33rtio42w zAt28S!4ndE)Tn2w>*8tHZoj{`H zbvhi%F#SUzlDEA90d-x2ry8P~ea_72l&uGUy7Z|e7g+7_e1A6Z@%je-N9hsG8C%Ty zL3+G{C>(l)k#=HXN)T)%h^lG5R57aENWF#5_+AeutbCs&2Y~q=ra_2Bp#X?qF0@;^ zYt(V42~T0j={`A{a*^!{O2II0Hcfx(mTFE1ac-Xgq*+eCVVDC$-E~ka%0{g^mYRMq z*?QR`{?5+&a)aLiUU^R4@o9P;UD;zu{eS`1%st2+wR*_81OvJ#A6pOg5d6D0Ek~)q zcw`<3#7dU&@EOA-$Dju9kJF8s@M&+lcNdO;JI>Z=ip`gMQhgvbwa^ zSj7rzxM?UNHxQ$7%;@r}tZDbO)s)OyojAbcRU;lyY(HDepBBqM3$r)tzmIFfs_MBr z`a1!|jv@rSELZeY;#gb+3q^}!3tTX{U`b=l_*K zl8xFF%HA2;$3U}x0`ajhZ2=9Hl7j&lVF|(9;XCN69NboHK=~oegHZ!1NH$uvfEIBaAf#HD*mOUL2 zLL_P8xCrp}8XQ_k6kb9Ers zFV|+4DM~(-J5KkID1u8>whR=2k$o}d#iGw-#{l1VfEO}gqkXLz- zY@C5I>=F#1y#6xQFKMsjAHZ4>YWbvy*lJW@$awZzlLl{0{sxjCO!{ZS2l585*!L4F z9@PtlrVpAv6Wx69Ze^-o(E$J}|8h7S%w3%AB}m-I52uooUQZ_552l}vk`k5TZF{&p z7A;%Uws)MAgbauF&n??ZdXDSb142C#gcX%{R~yj9m^?y7xtm)fZFg^NZin~i@lZGh zpJK@Hyc{rU&Z|yzQlXmzl>1qSZ!Hdx;mEu8X&rS}x#`|$XTkRi$P&2s*|;=#U#}?T zTM41kZkwwRS547278U8V)$|l}v~0KUCLGI{Ek4NnGbasZ)XXW>we09BP3F*WSuR`Y z#Rzb-*Vg%47{I5mUw3EbR&380Ms0>h!K-m9d>g(<6ce31X)X`s1e;$O@RU26brZZ$*qxByT zUM~(Xo9}ksWAy$jgv!0l;XBbbNgqmeYOtl0*iBS#G*{E`*M~e){JQ5AvEZi?$i4&) zeaEJ@g6Gy$d>Q5$>Ek*P#ZHkm&YvNDZYOSPK!8kzyG2&7pjC!{bHujn3sEX45m)`7 z1Z8&T%{xl)KwiK}ytXwXJUqrzLe%L6hh56xjEe;JiLZCS?j95`_Jt2~RML#C( z$m7%Sq1=ou@T1R>Sxu(3MyIE><{DoJyk!+}|2VcKWVw+ZeXeSs*9~mulV6lpQM+=7 zdkC_*yi+z_75~v2yI)-DTlN7$#W|6BY*A_SBQPnmMRU0APFdlpxZbF}xu_%4 zvaX`a-3fuxig2n}^%w@8?Y7#c=8!=9OKd^m#9`N5Wfyr1BT-QD7~*#G=0V)`!w&i=PV&VWJ1N#&B0!Ei?v902o|h=k?nxJ%wV+YKRPxz@d|ynVb7@)|3+G zNCt{5#9)yDktI1vGBn(1(FlncpTR_m113``Y;qtbLB`RHb`|GQjCs^2Az>hhk-#hn zdY)mh*T`cjjCnSbL5y)W#5Ia?K4dM<@_KO4`kxg}Mi>yb6YE;eB8;~a2vsFPVadSQ zmIj2`6oqAQNf2A6(tuD&h~O25%JPV}d40`#5uikhF_?7n0SIcsX$Hd{^OytjnIIpI zSO9&12BsNkd}nW7uG&);USYsYeS`90ED*>Y$Ko)aSQzPWA_*o24z6ihl(mcQil>{0 za~AC6jElP)S8nR)i9;&B`EY-~e9n#5-#lB*LqE|U&VJgoZ`l37sNpU`7xUzLLbn4G zxM(_g_wL7Q9)||=2^wMc&b;}sTqoo{+8z<($M>J`Y$r*z7%K3UV3VCEURmCqGbv|Zd>e$*#9c*T*H}Q*f@?6Qz1gu!JMLU9Gh)s z!p627o)DR19=1GW7$YTzXF@`ToKiVc^q^JD;R)qIVM{TJoZHBBAX~!Q^L~2Y>$$G? z{r11E`+xmE+@F3Q?)&=pGa4d6RL~EQS#NbraZJFV^IC~Y{GvkSTMeYUWvSuK=u7n; zJwcc1Ken)>O9*Zr3(YLQ>jOGU_@U{U2Xr2Oe88i8rg$vYXR-Tn;*@{E>@rtpwegSI zf=qYF=C4TKYTP-X5KHsTs_Cg%qB_;%Krf}nW#GPfJuITxHm4#m<_mEAm9V$-aT7UY z)xIx_b~UrD(>KXUJ8rBm%5gtd|I@nfkhxiNPRvO915(FA_S3x~p-j%vE#i~3Iu#z1 zEVfIqoW0z0P44@_yOu~m3D46=kKbt7D*AdSCb!i{Fd&*qODhSaAsaGyPrv@=P5Pr?;d#7e$M6+LTv?+th?s48)X49 ze9?jwu4J22vJx&vUpX@=_n~{mCqH*{JluMIO#TI{-LmApn+fXZNKi*C7jei#ePHrq zfQg~%h$!$w=ym_XQTaA5Ul8U#1rLMp+Hh*uN1Xm>3h(wAC&&ydkPC5OxZvUF1iamU~a7COJ>Re9S zjV-0$sO}q@zQgB*ql@ydlWQK%1orFCqrm~+X4n@W>2F-zG`&0*!@hO>WYc6ECIVTS z&+~KX*P`Bpj+7&!41EM_YyML$6w{D7@CcFuJDZzAi(n)s;{jvIujoQB_pZ9jD?47| zME@GQRi4MZ!NtLWV6&tYHvI`$?6_*zyi|rwd!}CGyL0-+v}cX8sr{N63OT!+?@R?L zzT17lNV;Hk_<{R3hLzj}BHE^8o4_15oQV1z76N0FEY7 z6DgUnhMzOmd0Y8C{1i>A@($=tMMmyxV8s*KYuu)c1rgXPb<#{jL2cJcOL=_?_Q+|R z{E1wLr8-XUF_z59Wb9Q514dB}T6{#w7;vvy+NZ}g_O?Z+EdI2CgdV=zGI<+=zb<(; z4Y-SA)6wRzDRtNtY-0CmcK`IXX-BHY5rFy4O078Qq+W}W2mH3a3+89n2b_OMm%l^XwC)_uOKs2_E6a$)B9sv}=Y?yRDlXq&N9x5K z)RRAvx9LXC!5L)NDanW2SQb;8HmYM)jDNhRr{LPjXkBHhgO42)AxIjb0|=Ht1K9O6W2JCA~XYJGx?_rt=d! zc2Qdtx8;Pq--FnsBv33r&!O)4j8<0sy?{WV6^^C=~-L6 zt$NaNf?p4ca4?J;?-JT>5%CDx-Rb|_>26WxNopyr+tu?;R-BBpdbgP0nw(0o_{A}> ztizIO9l7xu(Vb}9cCXQHP@DiS{#{6-X5UU91#)@BG(Z<7yXl+P z^Wuahaeuvr%S+<3-f3Pg@?t@s-4KL?;reaC?8=L;)-@lH_egW{52N2kP!@>K2_OknShq6+deI=={5W5oE?jgMoZ zT2POYC)v<56h)U+j{ggP2l~)@Jq|4uot|+<-r#ZcLj0pfXXY=KOztRj{Y|$O$7X{a zaEdRuPoH*X8e1}j8*8IpY9frQQ*HJ%EbsDMxucKHvNr!r*}r z^#6DG7`X<=19 XWK?Wq5J}b)iZF%A>gZsd?PUK2iQ#k` literal 0 HcmV?d00001 diff --git a/os_exercises/ch7b_exercises_solutions.rmd b/os_exercises/ch7b_exercises_solutions.rmd new file mode 100644 index 0000000..f3cc95c --- /dev/null +++ b/os_exercises/ch7b_exercises_solutions.rmd @@ -0,0 +1,71 @@ +--- +title: "Chapter 7 Textbook exercises (part b)" +subtitle: "Solutions to even-numbered questions \nStatistics and statistical programming \nNorthwestern University \nMTS + 525" +author: "Aaron Shaw" +date: "November 5, 2020" +output: + html_document: + toc: yes + toc_depth: 3 + toc_float: + collapsed: false + smooth_scroll: true + theme: readable + pdf_document: + toc: no + toc_depth: '3' + latex_engine: xelatex +header-includes: + - \newcommand{\lt}{<} + - \newcommand{\gt}{>} + - \renewcommand{\leq}{≤} + - \usepackage{lmodern} +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) + +``` + + +All exercises taken from the *OpenIntro Statistics* textbook, $4^{th}$ edition, Chapter 7. + +# 7.42 Work hours and education +(a) Hypotheses: + +$H_0:$ The mean hours worked for the groups are all equal. + +$$\mu_{\lt~hs} = \mu_{hs} = \mu_{jc} = \mu_{ba} = \mu_{grad} $$ +$H_A:$ The mean hours worked vary by education level. In other words, the means are not equal. + +(b) Conditions and assumptions necessary for unbiased ANOVA estimates include: + +Independent observations, normal(ish) distributions, and constant(ish) variance. The problem doesn't say much about the sample to help evaluate the independence of the observations, but it's definitely less than 10% of the population and is likely a fairly good approximation of a random sample (thereby satisfying the rule of thumb). From the boxplots the distributions all look fairly normal. The standard deviations are also similar. We'll assume that the conditions are met for the purposes of the test. + +(c) Working across the rows of the table, we can fill in the blanks: + +* The degrees of freedom for degree $= 5-1 = 4$ +* The Sum of Squares between degree levels $= 501.54 \times 4 = 2006.16$ +* The F value $= Sum~Sq~degree / Mean~Sq~residuals = 501.54 / 229.12 = 2.189$ +* The degrees of freedom for Residuals $= 1171-4 = 1167$ +* Mean Square Residuals (Error) $= 267382/1167 = 229.12$ +* Total degrees of freedom $=1172 - 1 = 1171$ +* Total Sum of squares $=2006.16+267382 = 269388.16$ + +(d) According to the ANOVA results, we cannot reject the null hypothesis at a $p \leq 0.05$ level, suggesting that the mean number of hours worked per week may be equal across education levels. + +# 7.44 Child care hours + +(a) +$H_0$: Average child care hours is the same for all attainment levels: $\mu_{College}~=~\mu_{TechOrVoc}~=~\mu_{UMS}~=~\mu_{LMS}~=~\mu_{PS}$ +$H_A$: At least one pair of means are different. + +(b) Since $p~\gt~0.05$, the results fail to reject $H_0$. The data do not provide convincing evidence of a difference between the average number of hours spent on child care across educational attainment levels. + +# 7.46 True/False ANOVA questions + +(a) False. The ANOVA procedure does not evaluate the pairwise comparisons, but the overall variation across groups. +(b) True, otherwise the F-value will not be large enough to reject the null hypothesis. +(c) False. It is possible that none of the pairwise comparisons will be significantly different even if the ANOVA rejects the null. +(d) Assuming this question is about the Bonferroni correction, False. The correction does not divide $\alpha$ by the number of groups, but rather the number of pairwise tests. In this case, 4 groups yields ${4}\choose{2} = 6$ pairs, meaning that the corrected value for $\alpha = 0.05/6 = 0.0083$. Other corrections exist even though they were not discussed in the book (and the Reinhart reading) and they may choose other values for $\alpha$ or other procedures. \ No newline at end of file -- 2.39.5