From 9fe7d4d5dbb837c15d092d00d95621a7315abddd Mon Sep 17 00:00:00 2001 From: aaronshaw Date: Wed, 7 Oct 2020 10:56:27 -0500 Subject: [PATCH 1/1] initial commit of ch4 exercise solutions --- os_exercises/ch4_exercises_solutions.html | 1687 +++++++++++++++++++++ os_exercises/ch4_exercises_solutions.pdf | Bin 0 -> 53350 bytes os_exercises/ch4_exercises_solutions.rmd | 116 ++ 3 files changed, 1803 insertions(+) create mode 100644 os_exercises/ch4_exercises_solutions.html create mode 100644 os_exercises/ch4_exercises_solutions.pdf create mode 100644 os_exercises/ch4_exercises_solutions.rmd diff --git a/os_exercises/ch4_exercises_solutions.html b/os_exercises/ch4_exercises_solutions.html new file mode 100644 index 0000000..faf1fd5 --- /dev/null +++ b/os_exercises/ch4_exercises_solutions.html @@ -0,0 +1,1687 @@ + + + + + + + + + + + + + + + +Chapter 4 Textbook exercises + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+
+ +
+ + + + + + + +

All exercises taken from the OpenIntro Statistics textbook, \(4^{th}\) edition, Chapter 4.

+
+

4.4 Triathlons

+
    +
  1. Let \(M\) denote the finishing times of Men, Ages 30 - 34 and \(W\) denote the finishing times of Women, Ages 25 - 29. Then,
  2. +
+

\[M ∼ N (μ = 4313, σ = 583)\] \[W ∼ N (μ = 5261, σ = 807)\]

+
    +
  1. Recall that Z-scores are a standardization: for a given value of a random variable you subtract the mean of the corresponding distribution from the value and divide by the standard deviation. The formula notation is given in the OpenIntro textbook.

    +

    Let’s let R calculate it for us:

    +
    ## Mary
    +(5513 - 5261) / 807
    +
    ## [1] 0.3122677
    +
    ## Leo:
    +(4948 - 4313) / 583
    +
    ## [1] 1.089194
    +

    Since the Z score tells you how many standard deviation units above/below the mean each value is, we can see that Mary finished 0.31 standard deviations above the mean in her category while Leo finished 1.09 standard deviations above the mean in his.

  2. +
  3. Mary finished in a much faster time with respect to her reference group. Her time was fewer standard deviation units above the mean, implying that a larger proportion of the distribution had higher (slower) race times.

  4. +
  5. Note that the question is asking about the area under the distribution to the right (greater than) of Leo’s race time. Using the Z-score table (Appendix C.1) in the book, we can see that Leo finished faster than approximately \(1-0.86 = .14\) or \(14\%\) of his reference group. This corresponds the probability \(P(Z >1.09)\) for a normal distribution. You could also use R to calculate this (note that the OpenIntro reading introduced the pnorm() function on p.136):

    +
    1-pnorm(1.09)
    +
    ## [1] 0.1378566
  6. +
  7. Again, this is about calculating the area under the distribution ot the right (greater than) Mary’s race time. Mary finished faster than approximately \(1-0.62 = .38\) or \(38\%\) of her category. This corresponds to the probability \(P(Z >0.31)\) for a normal distribution. Again, here’s how you could find that using R:

    +
    1-pnorm(0.31)
    +
    ## [1] 0.3782805
  8. +
  9. The answer for part b would not change as standardized values (Z-scores) can be computed for any distribution. However, the interpretation and percentile calculations (parts c-e) would be different because they all presume a normal distribution.

  10. +
+
+
+

4.6 More triathlons

+
    +
  1. The fastest \(5\%\) are the \(5^{th}\) percentile of the distribution. Using the Appendix C.1 table again, the Z score corresponding to the \(5^{th}\) percentile of the normal distribution is approximately -1.65. You can find this value more precisely in R using the qnorm() function (more on this in the Week 5 R tutorial):

    +
    qnorm(.05)
    +
    ## [1] -1.644854
    +

    Once you have that, you can plug it into the Z score formula and calculate the cutoff time (\(x\)): \[Z = −1.64 = \frac{x − 4313}{583} → x = −1.64 × 583 + 4313 = 3357~seconds\] Note that the solution there is in seconds. If you divide that by 60 it looks like the fastest \(5\%\) of males in this age group finished in a little bit less than 56 minutes or less.

  2. +
  3. The slowest \(10\%\) are in the \(90^{th}\) percentile of the distribution. The Z score corresponding to the \(90^{th}\) percentile of the normal distribution is approximately 1.28. Again, here’s that calculation in R:

    +
    qnorm(.9)
    +
    ## [1] 1.281552
    +

    Then put it all together again to calculate the cutoff: \[Z = 1.28 = \frac{x-5261}{807} → x = 1.28 \times 807 + 5261 = 6294 ~seconds\] Divide that by 60 and it looks like the slowest \(10\%\) of females in this age group finished in about 1 hour 45 minutes or more.

  4. +
+
+
+

4.22 Arachnophobia

+

This question focuses on applying the knowledge from section 4.3 of the textbook on binomial distributions. Our old friend the binomial coefficient comes in quite handy…

+
    +
  1. Recall from the birthday problems that a binomial probability of “at least one” successful trial can also be thought of as “one minus the probability of none.” With this in hand, you can start to plug values into the formula for the probability of observing \(k\) successess out of \(n\) independent binomial trials given on p. 150. \[P(at~least~1~arachnophobe)=1-P(none)\]
    +\[1-P(none)=1-{10 \choose 0}0.07^{0}(1-0.07)^{10-0}\]
    +Let’s let R handle the arithmetic:

    +
    1-(choose(10,0)*1*(.93^10))
    +
    ## [1] 0.5160177
  2. +
  3. This one just requires you to plug a different value for \(n\) into the same formula: \[P(2~arachnophobes)={10 \choose 2}0.07^2(1-0.07)^{(10-2)}\]

    +
    choose(10,2)*0.07^2*0.93^8
    +
    ## [1] 0.1233878
  4. +
  5. You can think of the probability of “at most one” success in a binomial trial as equal to the sum of the probability of two potential outcomes: zero or one. \[P(\leq1~arachnophobes)=P(none)+P(one)\]
    +Off to the races with our same formula again: \[{10 \choose 0}0.07^00.93^{10}+{10 \choose 1}0.07^1 0.93^9\] And R can solve that quickly:

    +
    (choose(10,0)*1*(.93^10))+(choose(10,1)*0.07*(0.93^9))
    +
    ## [1] 0.8482701
  6. +
  7. The question asks us to calculate whether random assignment to tents is likely to ensure \(\leq1~arachnophobe\) per tent. We can think about this as a slight twist on the result we calculated for part c above. Specifically, the answer to part c is the complementary probability of the outcome we’re looking to avoid in this case (more than 1 arachnophobe per tent). In more formal notation:
    +\[P(>1~arachnophobe) = 1-P(\leq1~arachnophobe)\] \[P(>1~arachnophobe) = 1-0.84 = 0.16 = 16\%\]
    +That covers the probability of multiple arachnophobes per tent, but as to whether or not it seems “reasonable” to randomly assign the teenagers to tents given this probability, the \(16\%\) result cannot answer that part of the question. Making a decision based on a probability is an entirely separate issue! On the one hand, the probability of a bad outcome is not huge, but the decision should really depend on how heavily the counselor weighs the negative potential outcome given a \(16\%\) chance of having multiple arachnophobic campers in one of the tents. The question makes it sound like the counselor “wants to make sure” there’s not a critical mass of arachnophobes in any one tent, so a \(16\%\) probability of failure implies that they should not use random assignment. Indeed, if the camp counselor has taken a statistics course, they might consider any probability of failure greater than \(5\%\) as unacceptably high, but this assumes a pretty sophisticated and risk-averse camp counselor (who, let’s be honest, is probably a teenager themselves with an under-developed prefrontal cortex and therefore highly unikely to base their decision on a mathematical and risk-averse assessment of the underlying probabilities). Personally, I can’t even pretend to understand teenage decision-making and the idea that the counselor’s actions would have any relationship to discrete calculations of probabilities is laughable. Who assigns these questions anyway?

  8. +
+
+ + + +
+
+ +
+ + + + + + + + + + + + + + + + diff --git a/os_exercises/ch4_exercises_solutions.pdf b/os_exercises/ch4_exercises_solutions.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f41e68d870ad86677f93a5bb244e1b831679b0f4 GIT binary patch literal 53350 zcmb4qQ*dT$*KORfJDsFs+qV72=vW=w9ox2Tys>TDwr%6=@6@^Y_W5_6+UIUnt*Uh~ z$1~>|W6bf8%8Q86GSacalI~w$Ji{_^5HJwf7?{KI@X(8ySvnfo(~DW^I~s`?8QT0d zqL(qUHgPm1U}ECrNaI`nlw}Sn%dZ8g5P11zWd89UvZz_8AjUh!CWKF;t@epI5 zftB|{39;?#3t5rmp=43Uh5RhA1A1|#BAvTY%*8HtD70}0DM+*0Ka&fVBeGm8k z;e7XM^tLwkxRgC%99K*Bd~r~VWunaJ%ng}e8?`p}k}apPrUu*)wYV#Cy4Dy1o5HAk zec7)M#H$?E9-pG*ow*8q(|Gcz1;zIFP5)(6|5y`w*hzx+dUZ{`scBs|_2u@$eQeGS z{u-#Ku$0qow>E;VVyOqn*I&W9oMPdYDziGGI@vFydWI|8E8|lE|5(4Qp{IaYG6^pi zRQD==YsEeZIo(~*5m8<)ZQFySQSKhdhyatcwJUq(DT)3-F~wpZ70@$<;Xr#73iY%; zd0TnrqGGq=1%fs>aBnQ(aepylT32asLu}M8hBiFfu;2};E;S>|kIXuW2r+=`4IsC} zdNT+n8oMF{l8Vg|mE#~yzo^~w2FOEjd#v6_`H&|{Ez3^!ZTIHGgA*agXv6{p`Q)fb z*)$dK0+#dq;!DBXXjW6*dd}$@rO5KCZ%vhJ_35{Pb|Qs=TLfKOzOS z=DQxB_beUOZ@ajGkyP7Q%of*s+{f9=X7~tH4a>kbP@FK{V;Sc2?aqFMx!{*{aw*^8vR-(ToG-qTLk zDFYZoH|oRr!?fR^#8KApe5O@1!Hi`Xsxl=j z`-D)#%#56^7|#iBCgY-!rGJSD3t4U}W;|+>#ogwmEx(WqV^SsdU>at2&Qm(NRnR6f zw#-ge6-44J*6iQDheEf1j&L)1QmIN>MYQGc(9?@^)Lzr(clJOu;A)w zVPzr3M^ojr!0H9JlR#NxT{YTCS;6m`7OBJv50tmfS?e(_3iPF#&AEjmxUhotPVU~E zI*M6H3(n&{3G(~x#VtozsP1hEmSRQQtWd0BE+1pB2Z`vIA5b7p%`2%gnNEk7+u5Zd`RkLZgN2ACP5DSP#>bq1T0^LZSQ7vw zT(yfJSJlrj1*QQG(UB2n)RH!CB}R5>efD@X)Fy1X!m|^N3H`hYd@HCV)1lbxIU}0{ zCpAm;E#tAJ;83|3^42fEHzpIF)C}L8R?Y|{7U^_pbo5g$2V%YUMcddm#`hJ^eou}s z?pi=ErXOY(^S41lz@kJ~@z>X0vgqE@7T)oTQQb2g1ga-~c(zqcG8$pUvAB+Pp2pKe@M$xFC+t30FQb7A7;Z4i)iv&2Au^P*9gfumaSVcdZ7ODJ z9xIwV(YM}<-D0#Ri~)`nb(}?-j4VDz5Jbbcb$v)V7Oq*S1P4m58~L^Vr2p1>X`yU- zUzfd9%r;l|S$+B>O*z;FwYD)~DlT4T2l)f%jur14{t6lKrf(gcVg z(WBSDb9n*T7Z48S+OWX66UdHEw1szPT8Sd#Nay#`HWBJF%I*)OZo2XBCWb8dgPqnc z#2uoIRyp}5Y}_xSIC5fPv59PDO1mi4i_W_~5BTXb1$<$RtbhL>7WCKCe|Qr!)4w55 z%q)z||4pDKG$-PS|3jcC@4?LDLA=Y04r9ueRa!V#G^v7T#)p%it2_4}z(0K;+E&t% zoLw?%O%{mK37~zpzxi-^@}9)!ecg|Me^kjzFmGj*1o{XH6YH zD1C?pJXpBN0tqzU+#iL2Hl=}lx$XKn@+>wyllwY&@n(wQc7;O)H$S}CAHevs33*fo zH&Y-x^nJe}7moXRSygm?@3jSvmwLjU;1XlRloVe1@VvPx$PAr&&MgjQoasF=1K}zi$jOJ?YR)HGlLi)Jru}V@j!B+6HPRJ|K4vGyb#e5~URi4Se(Z z>^d%`fS&@D5*Rqb>F=t{PNlCs0!s`wy(uPnAwT$@1jA%+EO<9Tv6q4;8EzKx-4 z6=#J|Zq>_rc2k@UTrMy09iWt6rPUDKa*1L{V3N1KWsb%H8nBSgR@XY+p_l%!La9>+ z*>p^gDN4OR)XrQ8RnONzcHC1X-}&=UpffCSLV4wm+9ZWT!kwcUAqn%!%R5lKn%wA@ zSuq+28ORdm1bCjV7PZGVFV7fD=c*`eE4G_rI4C%4#1DI-d=q3KJ#R-oEu+x{TD6pQ@>o@vXO-So5YzRf z&G=N*PMJiiE5vqcOIndl6jw?16mUvhK*A1w%2R4!1v}{uP17*J}x&2%Vku0G%a1 z?VsMzkMyZ$cy0oxbbS;WOwSzyWc`}^oq^?G96};jVT-&;Ov9-p{1H&Ij)evBbeIi zavs%?oG209ORHC4p5>wiBl<8rI}J+efT5Y_+VM2xX@k}r?Kv4ZZ7wo8SngwTvc7R9 zo;5J!TiJUfO!Cvk!RiZ(avvtM`9{s`A5srJtFxeS3t68^n^HemhelSlMs&-Xm{sHVT$rht$e-HN-ue;JJ! z))QR@Sk5iliCIMmcBWXzMJ#nr8T2e`+lk>qM?_E#wk-*HDXdy=!+W}K5nX47ODhtT zH?}9qbTqjfxb+2T>BJxLCqL3#ZD#cg_Sr(~iO+_fL4wu+SB0p$i?V{|1A_cKcRwm# zH$m;qCj0|fW5N-*zR$WW{*&7jy#0_Tv`+9$goWOylK@4np3}Wf5)THOzPrTHG1vU9 zn7jxkd1eI1*1&<&A4I>y2)58h^wt+qU`^Q#qQ@dvWLfw+OIA69=(*R$nft{IsV8|e z7`eSiGYfM!=lOjlQ*eY@Yk+J7sN(e!Z|FC=LqbNu+sQfK@ToCcQQv8$NU=f$JxgPZ zo4j^8L^$}p#>Ov#m{v>$Mqxt41Dv@s z<&|c-L|6;{<>5^}UnJsEkxvOfNH`{%r#`nuaApu9rg~0=rIboPFYtI3W5!iVRDo|sEI5tBAcx;b+f?;-cV3fx0J2Kvx z$rDdTnVVKUQhY5VQqU7sH5mjHwnY*sm1w_6Qz(Emz3`D5bdsxHI%}eeqXg9a7k(A% zZ$3aaa<$C#ANB=65Eu~bN_--BU9jX7I~UlL-w(z0qb)z7x{{pW&^R%+EPAs^tlKyu zdXjwz}$%K zk~Xm(UdSg!l@MT>PiwEq=pw&-_zZ_z36A{@=@p>)I8lJw zf})c7Bu`qyG*1;8cj6RV8|S$Z%Bhu6yW=VPnuD>&MtLilivF@zP+qZA%GvpJ)}z);uVUkJdjvu-4JVof>%5>TAeM zZW@X7J?5v`5W%5g)TVAJb~NnZ)oLx3ZfFylwl{Owc|4FyB8#5%of5DkF8GbiX!$&R z)4B{+n^70x@ST$-sWJ|?ahnXs^wHbGO}Kg_{oy`aGbay{Zi{*ES`TC@m>(4!Vc62@ zQoh9UA}{`-$*yqOPsXh0{@3A}e80XCy~sri>~|YibL0daP;x62o5#LlOy@8trTW zKJ7J`4a^|dR%FAd4ZMKL$oqDKG}>dr4k4UHH0_G50d6!eI7S>6tppDp~8)W49V#F*>s4j`VU^W3%TD zHxgmLYPAKep);#30BjpP^eM$Lra8^G8`gq)HF!fU)`wqGI`+2_dTZFWEk!CMud$|Iafl*8+$vtlz>M`?p+yLVMv~rjM_{_-L@VbnA zGggq8WEZvvw*-YO+v@Z&j|twZB_DB$k0z!#{#eIS`9;vSuzmEdJ@;nj3|1&S7H;3qF6<97 zgtqJz#(+`PC8-B5g;iJPsmqieb+j@Ez=OeSXH%Cxp*H5Dj$tE2_2G20v9D9lftqfyI<&x$ ziNgasxpWAoo)ptktZ>$KkyxkKwbKhp)`?13su8PLaJl99911AoCj8CN;v5eq5mAjV z@c0aKC)&jLr#=SvGq@+ee9wW$nfXsW`bt`f(e*H($zL2mpH|Pk`mpfJI}L^7PXY4# zpX+ArXD-|G`zar5c$^_f8*p*mH(e?Dw8W=;F!4WIFlBk^nJAo)+z=`UyohD?Uom=S zoV!e$8}N0bV|5JF*5>%68}HCQkeR56uLOR9ko6mbTBNkv-k&U?9sQ$Y3lZwBd1K|e zEI00Us*d;r>hV}lHtNZiT)LwoTFQ>)uTm{|zlKVZIB8&(#r>&PqZJY?)fiR$fm5oy zF#Tq#qPn@A(dGASuYrGb)lTSNL`qm)J!4(+vlZ^HHcxjlGx*2+{S`ml>PF?|FvLUp z`?#Pj$UuUq0$KoV*=(?y8biFkz#0UH4&!r;5?Ths=UFV5#4y zO+dgbt_iQENd=3x2#*b4kaEyA%Ia;}$=Np^Cm=Y!UX#B-1sn%@{z00t{yS;L!1gz3 zrZo{o-0~l3_6`P&E%DBo2?kk#v|rP+7DT*w{3FLX-uXpXKyq63yJ^fB$xnMqS&}L& zPU4i9a$@I55SQe$7!mK<+x7XGzVjohi=W;5i|760ZD-Bq5Lwi58*yvu8@=*;@DHl# z;HzTqE-5o$!YTNdv(4Ab=TskmC;n%%7-&SutQ^UtqInEzRB8guy}LW(tRe7Gkt-C4 zo`lyjFIpkFWd~zg5xkycu_J@N<#XDRpA_}V9BJ@Mwf~9mc!kR=+lg!Rus^Qe~^jFCQ{ztn|OelkU}XC)|No~z2I&(uh~ISp}M}`%C>lvHAFI0bA;Bi zdAs}9;(}dO7EUz*eKc?sE*c>Wp^>8AEbd-;CMf~ytsjI8W|j<^^npY~6I_W!pwEI0 zO4&be(XO{aec>38Y$P7I$DSroa9~KaAsYimE+kLPt-9LuqfnCcx6D0lYK6#b8S$qK zWniUPS%0-Fty7q3!jCdAY5FWxP;dTfj1rIr-Gwv_DSUD%4xATR>X^qg{CjjMU6AGb z%!2O%%u8ZSOTzTUQelSz9MR^M5g=-`42V`-?ihejM6JAgAxZ>j}9 zhS($_xS!2zOMmo{v$hpaZq*&}l|$h(?zYN+m1r|(G0F;XW)FgJ#U6iAt*$_HO#KYu z70V0L{&L@O&mz)8GhA+V0v;)4ab<4~1D|21i2K%Ouo*aXhtHo z&zl$1uKNDeJB!Wt7TP65cip6|=%N58YOcjBCD&SceBA2%9YpWXvnSCVUGGcNmphP> z2&x>CUjiPk3}mqDOh~Yhi*0?n{D?=M+G;rAUoi8|=EGCoD$3YDN|dqcb4D5I0%;2X zA_ddGuhGCS8e&yz^MNzlrwCTW^t}gJj8?IaNsMdsp?NjJ{rr}x3Ay`Vno!h+DU`(* zB_MV6HwCmOWU9QC2F;@<7iYddu}UuNV~n~&lecFMt)RP4=!}VSY`bO7#bk*tz1{9^ zwrMVsDAwg`yoAv)h#Cx2q@WU@KUk%5rboX`H&wSA0CGjEjj6Sq(zn`*V3FfW5k&96 zML$0%!55#;FV;b=(~*F&HDCpv0?Y{wy)&2WaQid~Z@>#Cx9a*@JOFz2la1+CkM_79 zVJNgK2XbkDCsWE;ca(Vsto?$q{X-YWP zWtX{;)ra{vI8W461sd|M%(bk~A-Z+8ra{w{FeI&PJ~yu)hPZ}kGM{KziLCM6jp1{| z%n?iT&^A{7bS#BU)cun=u?I+LBrY$k7G{rUr-Vy&L@QVik83Zrh}P6IT5euqubw~o z6bE=mY}q1pQWx^MFEdd&b>W#uR4sbodIY+PctjZ{t$d!@Q~P%$(V(}R|*nV&u!meX1`u<5&Z13wvH-xngzRoh0G;@zJj0Q zw?EZSPs3~+qM8|j59FI-=l*np8@q3XhCz2_ubj5+Vp7mYr-BhGGkFP7+m2TtD1euP ze|O+BD0ufV9O>NtuIj>(R3hapY!R%R>e*vv`}C4{{xhoIxrm@BmS_K0EfPoMrQlHQ zZ;C@o?=XwL)UYYe&ZO8B(zDNM{=Iy9|P8h zBF|!tIL;_t{o|DNB(Pa#N6PoTqb68fF+LWr-Em;Ouz%tT!M_L0oMI4Hzhdi$I>oir=WXNdN&CPRJjoPFzo0lyqsM9M>* zYz5AAT2T?>zT9SOcG5@qVkK|^$2S9t2X$#`stlvN5BiU?0*Y%0x}W)=oHud7e}>xj z#)GsKquG8>Tar)+HMrLASPzqh+SHw&i*PF>t9 zdL|{-;!KI(xZcLHt7+M5uVY2k-b*U#;(iRCP({Uy7wT%7bKH#*lI*pDM-c|csn)+x zkcl_g?>g^10%C#a`86l?43GvixOkrC5ypvYqJ7_2Z)UO2b{ncMNUk%U3VCv6zTJ1Y zN$c}y=s41nA@Ac+A6CH%4%(`B2|8SocuJnK;F&GavW`wrP71C#l?tlrN0 zDm-fa=tIZz#y$%C4<0Km@SU3<8SmzUffmTO1~Ms#rfY(3qnwH>OQ=6tv{e9#G=;cM zL&nw|z1h(p(c#u(6G0>@sg{xm^;PahV}0unacUnSigUea`s0h%ni?PX~cUv8oazo^L**qJ$CEwGSC3y2KlEL| z+glc}y`Io5WN8Pjqp+|YlFE~(7Hjto!DNn8}ikot17@bZxqq^sao$ z2ReAnlJKg)9%Z#j|KVsV2}|D+>%nKIgVyn}^rAs1)KLyvXc(o?YJ*$_h}c}w1I|rm z)jR!fW*zN8&#v9MH(pfKiwn^RH=K_HcSaNCnB*#dxDS+TgMxJN)I(mzX$K+=*6f|v@+f$wLgIY*R3rN5qct9@Rj4%wkk@m zh1spVxa^qWvBf9607J69c_}8Q3yl zpuChUb;>iM933yZUhKnVCh@)B@ZnFO82&+%{j0nYBLgebe`~T#wUMZGHsp>s>U(h7 z_yJK8f_p*%%WigXPdNJ-=)dwtpI_4E`mv;uZU*0&{Yc6d)hy)r$@w|o@8-asuZo(y zuP>-|_+LMc?uQIt-$~`1DzR?w|HvXAohF@#k?Xsidjlt3yDjV{58k$-ZHAF)!N(E7 z!q8UHW8o#^UH(LP*w{x?5M#6)xdlU-C3|!Ql2!@fVz^OL^TK4`?rZ;sB7oi9r%yLk zD)lAtA07TKmqqmLAyYO~wLZQc-d;*IhAs|z>d>OLvz5gJX=A0Cy~qtTg1&C5aIO|j zFOwj7c_MQ@w4k}P)RJR(;L=J+(mMXd?g#Qnq4H%DN%u1$J&XJ?mUDupl)tqAFUSnq za+(S}{hO12%HeLWY2}Cbi1cAf26@&JgAj}xG(#Izb{IgRsMAf+QPujZ?72wkF?}{Bt5-; zjw*wYI{KFcwKTc&SF#^iL(|IOl4hdgdNDP`L9~0m_K~Joer5HiTJuSuM`2?{vowKx zW+_5r1H#haR#fO1c{r_6sTR3IL5Als*s4ep@weh0q3fJ!V&o$PJIuULNly#wEbmeW zZ2V~E3>S7eQuPz=U*o(*m+K^8#tF(C_Cd{v>IIyb%DB|+BJH?3r)#T2 zK{Vdf-R40(R=0xoqDBX4AYg!%OBz8mn_4$Byii3S>RirSX#6SHx`G4RVq0IkeHL`4oI-d21ok?>}96%?HII^UGE ztXZUJRg#EK6gbLVqzcBz5coJv)>b#u|a7D&=1TKz^ViAUE; zblEbk?}A4t%yLh@NAH-T>X>?J&^mMWkkrv~rl-}G+l_zHgvounOWjXK&q;G60tXL2l@7^GVN(K8zG+cdfX(guD!3}u|p|KC>0KS3v!W+uZZzNn&{q=2qCr_ zHZ;h>W6;?JLYif(Y~fmQHQszhS4a4z!CM(Ud+24$c}Yfeg~ym>S1n!MuRj_d*|h)X zgkk-63wg%B1sb(yr7ipgkU_TFx(uRdNuMLg2!srfX#n_)xzlULxIpA3qXpqlPbV?^ zlAP;{$%wNE=QMo#1$aI0G+7J|frXM;y{$+wBCQ(hgabEuHv3;9ax1V_D<=xaE;B^S zTUGo+b4z1uH}efbEix=Nm zakHF_Tn3I@FZvQpu~qu!NNG(AF&jGd!_7g4q)@4jZf}088B_&|5GzNjp3A6#*|BMd z29~`y@n=TPRwllGH%4@sqg=NWVoyDIp^0uFhUBxDa;Moc1gdMs;a4+luEqF~+K<7i zyU(r~8CCe8a~4eN->3^!qTZ|(&vwILBp30j)+?{bgD25vYBEk;GYWBHGqWZ@0rJz@ zRw+E*;acY$FgCm)t};OW0R!fL<-BpS{P&R8j+grn1_M`KVZ22N+t~}OkSM4?0v5B- zkzDco{O`L|<(&I#YEQJh%JR<_lkM!>+^dpVhqdXcAB90>IjO9f72g4U!YcjN^UkyO zys9n>mJ;6OojA1IoJo77=bXQ?V%~ z9CG1DEK1p9#(E0B8I9@9HdxBZ*Ury&#OTjfi_0XPYK_t@6ps^k8KYcIB`3#gc7Khv zP*h=?rw!H;sf;F746A3Qh_2lBV~o6R@jb;lTa;xh0(UO;VO(&wB3Vh(Acpq{kOCxn z1WU>2L5-I0SnZI|eVo&p3G-3?WHx2vuLPJOu@c#ll_B2WdCS;h#paMFx4Zo1i$Nf5 zubE@Qd4)TRra=XnMaUs;g&c(l=mp3jPT>&*1NS_@RK6XL*`wo{K_jl4=AD9Qqn2<% z1P*HZMBw8jiT;)6f&O-RJjUMC9@WFu<-MoLo1hUSiPVBO=ak1K>HXEi5n++!I@5@<%?73xr&?V!1G4A5vu!HvBon zxxYo}4UT$ujNG!y;?Hh@RW$8%`kWV`qN3Z_S1JJ>Vd; zM2?9lU}0*grZPLaxDF>YB>p13z2@RUaR`gyyyL!>B4B?Kus|2zQ-jhGz=H(Rd$;P! zO`1)(_AR8t>F9MIbKZ6aq|9~y( z|TSsJ%wcY1Vnh3N%Lh85i2K+-+|CK$>%FOY%CP~l^Ull+Py1Ju2w3k*N zUmB+f$uSlVwB}b$o*hexV5=r09EAJwjCV!EprYW}<2>>_8c$8Na#^V?{l@w>({!+j zaH`C%a#eW&q|fAPb=ZJVs3>d233#`0rEJw}^rUUI85k&CnfgfH>O#!!>g;St&I|25 zVt48EME|&ZBaDtHTMs?%>u{jL*fe^3bFxj=b}(PC$D&~UId^(Cy|pmcY94(#SO3^i zrKQVm@^Ig|@s{`jJmXs*VD*RfUl>geuU2bJY;zVpdClW&)5D6&PSiNuGx^?J^m^sZ zOn&i)>I?k?9nWg;nn5N%u^31WJ^+I*Y(az;!b2>gQyau2x0hG^<5rP^97)PRLim`} zK|%?VK9qD;z=4R=22>JYXH2M&oR)`JNC=CCj?&`OpDGVq(={*f6WWBb?XR~11txg} zlL5!-uV6FG!~tgzPLWeA!PjO1*QwK_fNw((a?OoGvvQA>E5bCe%~1+V&-IE*ldAW} zImTr0lNHF5EX?}0#)0y39Q?$m^DHG6lT)^7sv(GEijXFu$2&62kU@wV!(q(#6&!|S z6&z@BbTdD~uR@ z1ce-rs3t`q)35-X_s9X8+>)nTG2WE2>)G4Q%yo3CcT`bwzV-TE$Jwg&=2)X)CyI>CD;1GJQ6nhvjN)OG8dBJ6%33jL!Dc!;ysO&_kQYnwPburQV?CI^a55 z_)^mb-=MZ)mANCr1;3FuClTmir3g6X3^`+zoQ4f>L*m&W*K!axS(D7tYG2YFEe2RWLXnmq7N ztFI>H=i#1W#Mt|~k!O?hFWROXYqOz`G6Y`lu*!=;il=wb9nYz#f54Od-{8see+}XI zwXppE;OQCGnPG%=?tcL)BCn~wGICj)>f6D(IszT9%5_L&)1`4>O6KQ#RdrgnC6%16 zR>rg;vCiLU^XNu0G+D2z`&w?r!g;J@f-@+&#=0kTy_Rv-V|S;``(8Gc*37TtrTSHS zMgOpzs=Z}y;r#IY`L32-iQnMq5``mrh;(8_yy%lM)xv&{KWBy01Qm*VY=!Q;4&jW|~}PJlCrEPbTcsN|=Wg~P0@Offm3 z9Vc&SKHv=*>1KXsxqS(v_JcBAkq#{fno>k6mZ$)SQdm)fQ!!K-qy|iaf+Qjo?42fa zr8s(l%`j%Lx;RIgZ7}s|Tl4p_t`B?co*FcivJ?qlym()Ofeh&ZTB*E5qI)Ok%9 zP>qUAeTNL%BTY7m2gxwvNZ^P(h=)X&2Ky#1KZtMd+QMUDF(FN2Qr(`9%JqsOejwlR z<_Lg>zRWUURDe^O`ABtA>Q;_<#2)c#EmgN@a09_evrvi+X;Q`lht zVb{s}uXHst^WRpT+HrE>{tW+{apAPl3_KS%LZWDB3!1tluj0AYk1T&TCz`=~y->UR zjr3Fg*=SQn$9T6$RJFud@3LtoufTU9GA_vNgT-$-@-ot%CwoK;o_VFqw0zQT&Tzp~ zm6q|zjW+{v=&A3fU`@)^qh$%Hr9H!e-XQL;&}UUt3co{aVwG1;qkMz0-8sWy*5K%e zo{nWr{HvJF+-7p@Z)_)%aA}Rz%-aX!}WF`kDldFaa-+TS0j--@@*1Kmko@LFiGGwO_C%2N?CB zg*mvgQvz59_(`gG6yE}q7I6Zo_!3aW;rWO&nu4Zga-1-HW19S?pevV{cf9rniUuce z(=<2`K5Z^{&Bi&P-?+|0ip^NUKJny>+bGApx`s>&8~&kXIsZ+|GI9JJlvqG`FT-Cg z`|;huQM~}L5GD_+*d+gJ$*6prl}w3UFFt0_|H~^q^v|*{MApl0W@^2)3s4nr*2Y96 z7|*S+uy1BPQ=oZUF1*tz#z0=x*^Y9rbRm zMjuk*-0<>7ALW+3sqK={4M$_+C&d^9!AGh_^d_%fW8$HoO^=H$YUZq3O6F-4&&I~; zPs9@5-;yc{+!zBe#CG*sIeV{RlBoby!4(-*(vpL&XEIf7x0^BTVdIB{Oe4s0u!C3( z%{);&L+ZSPG*fl)Rk2l3^N?G}nXrM@ppxN`Mb4Slka|KVIb1=LUso1wyO--Mv>QH; zm}08fx+b-QK~!$uYC0jP|Fgtw4F9IY%zw9&wBvLw{29;(wm#5Z&oKu~-{<_GfvPbL zYbg)lzdE>b#X=u*x4hDbJ%0)8{J7%e+|**0+EZ>sWA0MXHD;-4O-#(I@h*v5j!aX< zPMRod%ut=Zs-=eNi=Z30R(I?lckr65i+;L0m>t{PUBfrWdlIs`voLV2$ip63IuaPy z;f$<1;!sE)Z8Z_pV=$hqbAc|@64u&UG8~>T%~$;m6f4EIqmPU7fHk_L)5Y4OJ07K7(M4$m1zBd z&KMw(QE(+|P?3>}!E3Q8q%P{LmP zfRmhi*sP8PD+i55B@WCq2y+{v(L^^6O;rjY?+1mo2(785=;dg?^i?G*S8_6NbhS027nT$ev$1wm{_B}R`2ThB zlacdp!^u{ezG<2p` zwdKBb_0)Owwtz+;L`Z}Tjd8UWi=JIg&Oyf~7+*dd{tG`YXM9|Z`hGKet(kQFOa`O} z1zH@IV?8+Eqoq*j*UxQtS^c7PBTsWfAkM*VpWe zf8G%0ljO~ViD<=@^oB?B&|OdFqvZekbF7w9ZkyDVB&P9Dsgx>~FjD}aNYy%p4}K=N zfhU$O?OPy}3sJUEjR|}=z2`*#TA*H#3KUG0Jvb_)en?O#ENCRZOjKH9aTTMYqXwj! z$SV>Oq8rImQ6|omM8d)`ADRT2->2$hy<-cfyuJ_#r?}`2H)?Yq5ZWM8NvUCfS2q_v9*b}>zi)wM?QJ3*u8LidV5r4d@v#(YBv^~#4Z)EVR7Ck67l`Tk zBE7c;_S^UAH6TRT2O8ebEW63`)br@Y814wVE=a}RbZSDLR=A5v$2L3dil)#JZWQHs&uEyuUm6z`64Y5fYA~z{M zLfz(rJxU67JYEPI1>Zk6L|SzhcdUN$nEd{J6Hnib%CtxqC^_9VE}&<3DmgMl}u7)_Ok)9r{<{*~;8V zj&+DWJqDS;69V{3C>#G68&E`frWj4DN1sXVIlPf>^j{wA&S5R#thR8zUG+hgl_fbR zsBkES(i9RshU_|!)RHogi!yRrxSfg=S0u2k5mFAl>p}*74;>4|SC;r&%`67rwV;1^ zqkW=}UxAy>$w9viMK|}THWiq_Do5x)aZ;AV@&Vpa!;&j?5s!LAx1heD1Bm&Z=hLx@ z{2CKALM~ozD?I;5NiBsWDMvG@Z6*8O8AOzo>f=P#ifDw5DjO@YY>Pa4k)tWR!3PdpR!qL7^!1PzD0n(-6NRc8IkUJVm=a?%|@2W5^GF04`UCXV_)eqMuh>L(8%;%NCOB zXl82qXZpel`klGJlKk=pU_A7`%=?Tl4aN20gDLuaJlL*ieSTS` z#^X{ny*GpM*y@iu)51jKVG@l3Nqrm*#o*Rsu{#Czo*ki}?FP}1W>oZ_&)F|7dmF@6 zhgbfat)CE;7_8~o(MiKHWELl5%dSKdcyzP0+Xu7U2V+){EA3}O_`;y*0hQYiq%T~U ze_i@I3leaZ}%;=CiO)gIQ&vJjY>dO9jmb~ zA3*wvGtT*&zBkuqHH#NT4(UlXZb_Pp7MH9mX?F5mCbc&P6Qi{ACNQ+yLrZngdXOdnITX=0=Odl{=r? znKE_7LERK>b;&o|1p9yRBFt~>d#I!J1U-EB-x%Y+A>*BYvyJRZ87t~IX1iz$Yp;Lo zLeqnmrzsHN2`iN`(2SwlWoPR$KyQ2E#6kbTBoF;wiKvt6b;%qAH1S1(BYKYQpTr$> z`&1Hq#J9W0lAr+B!~^N_tuxsm)`=Ef6VYJZW4L|neb-_$c~M9$ZLcWvTgJJC5)d7F z#@3~_u(q^pKwEajXuwj$HeK8P)#uQywnw$E3e{v*GVxPo{UmAl;%lcyu!udQ9%l#EglN{^V zQ)=Sq+UMZiA6os$6DLtJY-2siILEGa-Jn;OVhLhgAMCL9Gpl9j!r2|Tu~SlxXATX0 z{U@y)*Qo(f900KDrvF3;qnC#N2fp*Kd{w5unbj70dfUhh^0vwb*LuHfeZWD`jKJRi z;nV-+!TkSHDQ3>UTQk64aLQ;)ty#!%xnZTrjJ#~ZCI&#>JTSk7vWxFrHn+<#0Z-iRk|2$2`3X0vF$YJyW^OzmwsN{3 zR387jk8)-ah4w@1NWU3vuxGt`OaFgS_D{jWFu}4YxbQ98wr$(CZQHhO+qP}nwry+v zn5VsC&fK`Cqo1o^Dzd99v$C0AF<+sx_St`SEbqjR7Z&*=luIS$Eqr=V>3oU!a|>07 zhexW0d!x|kG>+eO30~h2?ZP7^lC6>>AP&hhgu4f%x+kQtsn_bwkcOX57#*6Kc_}GW zspC+>B;CSSBr60dVwJ{MC?w(N9L&7~6{{1d5J#@-1T%?a6eURvTcin9!c`s=A3E!6 z3JzNwGbFK-;fYcxN(|-X8q_ILB9BxmlT&tgDP6MDv=Pp5rbfwol1c-UcVoY}*KA>7 zU!WnO-Pzo)x^yd@Q`l8&;iZZz%Y%ta*66rkQ>hY*66s&@8QiRCTj8IEyBYMXIbKmu z!)ivq8(!8yt%*>BZ3cITTJ;OoZLR50Lqv=asd1(H5gUl9F{B2N)iFy?8iyOlw5@A{ z49%#cjs_>rww*jzCMHiD!m_>G?e2j*YP$Iz;0~!CmT3QO70(~vL!QxcWur1~S$*bR zO07DtLNKPx*8gz_9Ex0yC^7lW`$6FXaBW+extg;d5zuWsz-Zc22Z=U1@YX4skFK*VcCooNk@uim7}NAs4P>wGs0=UpT)z?B|<=Z zDm=pG=Nq?oe8AQxv|{zoOA`TD1)t;Nb@tb}2LgQ+Fsqx}{2V&PY$eDUJf}2}76v5z zNVx0vpuj1dnu-s|!+-$a8_eTvh`Ef2DT^gi1rD-~S7Xf3xVX@a9rg=+x<7rr{2W(6 zDdKU0ig`Wz+SMW=RPFsn9UhJW|J-R&45I2TW4HxcV^{oUi`wO)c)s6lby0Pm`LJWv zR$enG1%7P6M7se?pSv~11T5q;m}3wfVn9hF3JyML4a2~w36sd*Gi9F(Iit#j`YC3% zMdi9L2ft|_jIid#>yi@u?ii65|40wMY$!~!Q%WEuH77ww-P!KR;aUC@aUn#HL9)6E z=qOCRwBWG7Bj)lQ7cOW9kZ8=x|A{&vm3>2xZXYv2?Y|gof?4TecKk0V9LRODokujKHxxo2m9*zuzWEHflr z40qn*`WVBCr3W=ExC!-~X&HF|r!G46hFA$f6}D}s{MwFF+Ku(uEti1KMGTv~jOqY|U0cGRM)WChy19U+*W}N^7kx3{ zVjJsTS{s_hcCVG+=I=EvgHyXzYIHL81Fw0=QlOBtpQ<2u!{(u$zJ|_A!ZZsCLX^rXeG?0N$D2;Cy@q<3-N;bA0 z35m~YofgU>j#jP^Qd}b=oTUlkLaMEZ1z^kBd~W+qVGEqlew6)ZQh`>D2O6uJq79d8 zV2QCkZoTEj^&_@bQF(29ZFi<5=MEg@IG^6nv8$J@ogv!Jo*Sn6I3W~0^1|@q%0_44 zHMN4MhpCN4Pf3JeReX{>RN-5heB<-+HM1kcdu<0Uc9m7x&1&qUXd?PdC!DU@0(@3F zsrMY+wpYR5eptzA?=EX)X9cu2*_{Bcdl2e0*z1I1^VGWGaBY7&)v%c~k5&X1O8$`e z5dOE7zLJZAPviaJKSzt{&|>IK@V`ki+`mpMtcP&w`hfx|o1tpjjj*z0Ya>$hd;|L5 zp_ZpKT9rHSQu$Lm5XgC#c9V1^z^e9o5L*P;qDuN~8y3_|s3@qzxSdB;h(YIML*B4!3Js;8WKAq$nsrDci=nafsKD=8?J z49{$~4wG4O2jooMPmC+}P^2|qFQZn0c>&jKKu|0if0Cp(C;Xj3>kf;~37o%Ak}goV z`82!|3@qQ~`ftz`eX(8dmWA}(Daya$G4WCD6OE^6ei1@D4d6df16OJugFz+!_d*HI zP;5_L=8-Kz`_3Fw*>wB#KfNV)4Uv$J6XT2xMI~vWopyh-%=VGE6*Dk-OpLwlZ;mdV zuQOO8_hd(?uAaJ@wSf;;ph#svF3cu1aJ zG1_sL1?;dE9v$!x`^_V}0<04?(rB@8%iU9xU|5+?C_kYshLGB2(Tr_u0gI{G8m*$UhmXTC_8f zMWnA^43XdV!r%1cj+egR(mF3AmBi}F$^zvXFf41>sWu=atM}pRfLH-5I*+TOk@1Wb z__n+OcUFgeFr$6QtIAtxl1Wjs*yFNr;~9+>7#Nis>w?maF`rG2AtL*uaXis>X;5fHU1gYJ>{3H8LQ3M3@d;Kh zF_qzrslux>u|I$`wgMBcs0wMO`IID-enq(<@NQi7#urX|^0-a3>8@t3dd5WI?Uddp z*EJE`n1U{n9gaN9E~hyY<+HAARhLj3l$zaEQ;*@&NTjZE8Z#HR=rEn=l8tH@vj8BP z7(#U{T5>wp3@WMeA-o4ePf?^^!h)wAvH6IS@@_(y&()z!&)EaOa-97^JbVJ|-L(`Y z(GizYWH8lEVze(cKjKSk?iaIhidRWSrH)cWd3KQ34dT^pXBS!AmCR)2Z1F-2hkybN z{9d-)+eEwxt`sNQD#^V{hYCLRlGLbIN>@6F?VT@WnTyL9Q+!IsbN}4z!3*AqBpfu% zD{?6a`nBcG;5XPH&d0DOA~$nDaU)#s&60zDmg{kHyfg4D1>RUw^vY^Z%^5ktgKkn^ z1D}nOO31XsMXmhI;D>Jxa|Ak(M^4SyU89L`4p;1F6$LZ<^93LsS-p~fX&Nd+>MCFF zv~J!IOH!cY{p#R;1eTBAxw=%|vSN&@)$lTCp>kHVb)8Xzcd*>K!_6@rtK}dN%5u6|4UP>&?p6`n=k^sCR zd_2M2U0eG@TW|eC>0ZLPTx~rx%1F$lhiz`->Wwr5oxjIKZ)@xh@SR0c97ThF5 z10Zngg{U0Mf3)8XKOLW84VQFKUm`zB=FdE_!%?d4wz*qyz~rW@d)ujY^0ferj2PZuwtIkqG-}c0rzF@VjH}&rYSmxm*=bNlk3V_RMDlR!|nPHUiOxLF<%2)v+%d1m{Mn))G0+1c^ z2wuI~Y045q9p_}ap(EPz5~;{pSCZ!Mh~M4S6}Q7COH+YU)?PgIaP?I&UyfsI(lw>? zja4*G#_06QrNvPI<0~dgyXB{E^e9F~kEciAH#LmdmH9LuDPNMz zQ}Mp9g6or1rFz$P4gcZdsyonOEx7)slA7S2#wk(G%CUt6KZ0)Ey%2KaqvPjwM823PKr@ zSNY)}Ja8KB!&c!_ffIG0B>cj`tu8^JVA;z$)*jUM+w_W>@ya4XaS&zW9R2xIJ{%r? zk<5Y8l67Fr=d_ooEyZdU6osaKnyu2F%&zC(4Fe0Tn7u>QhdMTVHjRnaPjO#X>|>+) z6jmt(_e=*pfn5$p%RT4*r8>u{ER81(&D`W(NQ1&qlHXpd^1eQ6$z~IO>`t!3vTxgr zeq4l)Rminqz8ckCTqR&7V@VNMmjq-vv!CG6I%qzCwyV1NwW~h!9)Z_53N$T?Dg^sC zE`$L`JPXpH&OSdV&_lb9-5(oAsjK7vmiawAEQs*OR z8Q<30J6T)QvZ820Oq~=Q60V?6=c^y~ApXGqafc0mFame+hMzZKRRS;CD}AwT4j;*fBM>eHsk; zPj2~@wn|$l9Z@F5ZUpLCY}%Jakey}&>OFcaY7P(uopY1F7#9*QK4 zT3BMlGn;?Smx4&nbCWp^GoR}HINTpT8- z6mxcxveKF~9JvblR9SR%LN#HFnafe;s%-B-xD1uH43Gi^w;7 z*ekPAxsB7TLVc0C2rutUm?(f{=wv14-d`5{sH`2uRSXM+p2=xV>~bdzHPYx-?p``A zvmqy&)K_aGF3sjmktiGQDpS54YoIoGV3mypNl29`KU&J6OeAoXNjPtAEs0f%938kG zCkoX>S#&4V=*+U@JC;a@`i^TvHm^{23UyF%#?KtWb&J_Wo()54ur)~H0wZ<0gyX0S zv$2DX6@+C)D*RThRlQkAC$x-eSLqu!e&EDe#hx6iO-fEUMnXP7N?L)E8pQ-w645w> zM{XUbO8qVrGph?9%MmTHR75(Qk#S<^k&%itJS#&!qg)r$j9f>ueWH;@VTJQo;T(bA ziJoD`<%5(u#boNo+zH{Wtt|(^wmce3GtjA=Itp8W_16ELb!=Mom+kQJI$dz`c|E1= zTG*nZZcL;y6mTpDeYMlW#(?h|47LxA*-gjgwA$co3?~Q;3o}ZvR0LWl!r178fFk1S zisK*j6R*n-g+>%R=o_41=SuyGz6<~zJ&0njukCj7^`qU;TCWczOuO#aLfNmxe~Yz4 z^|86SzrIKfChxr7vc{_CP7+J}`>_pJssB72LJGu4#gu3wcviUozBk?m3o?@vZRhg> z|FV>?$_OK($K=3!kR=X)HFpO-KgM<8Wibr#Jw2Mt=HEo8#_D1b&Fg~svb|cihL2wABKrpRUcpdP6S3Qt8k>xjDcku( zfD5Xv>c={K1B~-@ts<(Tm(YQY=zTyf zFmWcFpU^Sy-ES$gsoxL18Tolaz!fQR~5mBZUV#O-NhOF5&HfLYM6~udjN2Q zNqrtrtXX(td6fQV{ad`}-zqmySaIyZf{PfVcAX+^kTa$e+6Vb$52`9W4q3mE@mh_e zp;6;tXTkFm8;!+yOW}6w>-|HU2hW2LK{-~tjGE&~+xd(l0rt6^=Cwalu*(aKS4Wq& z4w9~e9s%Zga1pC7CPt6Uz3F3}YEs6@ci~00ytIRGd0~uJkyplz$?yv^$a&TMe}Jt2 z!5#lU*aOr5PiV5z2LJ*A0R=?`0|fyCfE)xg`9H+{A3fUtTPS4ZVEkYBo8t+gjik2r z8ypX9TMpg8X>^z0vg-4uqE!>wrQ!gnW~^tTNBHmGAfmWqQvID3J~b?O_qBWpcz-kIzZK?ZGKr+T+lNn}J_HaG;q8x6!~>#0NsEyR+Xz?{DhP ztNWjQ#3@N?w-kKgaKK0q!nUcXtrc4-v`|sZ0i=k%D+R;r8Ad-JE`rg_4hFqi8#VrOrA_~I3 z-5Kt+Nt?^{kur%y74l={WcTa>A&MLdCc8lRcA`4ckbYygF z^AiL_+tXvL^BY`r`t#-y3&DZFZ9wq7e)z$#*D$*wH$y$!qI>Ck`HA?{PU@aSsuY-nj|ACcMoOMa_DTwG(P#0CPoJIR z9?=i>XU{d>%HIUQiho_TnZ}qFA6~oD{#lSHoF;d<#eMbwopq}c>$1YuNNYqZopF?j z9*hRh@ite{-ULRcDLJ1t-w%RMMuXAubkaeon^6GEI#91M&N}w8{!Yq2j^>b~HnE7# z?J#@DMFQF?fr-O@+K6I&l_Zp@;Yt;U3hLMEUxkJZr?ezjb^MPizywPOF%W=?ZpXpn&7f(y*;DSfSEq9I3$M&UN%)ox9T=mYtOAtKSN z&#dvMOBf`SIWeC29Ed&sS|~LNw_==Wfbk6LAe!Ep{1Gdu2UgSB{|wIrP8e2NN={Zj zDqyx;tc_+Cx;;#?;W{*WgnKB*Ed%`CN!2nHeczqlPhN$-VAB96cbR%df9RDQ z8t$=B{hYN$FG#5$-8L>4+^?Orz%r8{sy~t>k49LXcf-9mtvR>Uobi3YT+-=80vLs3 zd?HJpwzE+h0Cb2R$V-UhyHj%-Q*M3-gjsbGg;85U0Y>OiyXjR0Ry;t z+}IhC{{0m76pKjKg2)7GJ9TX5v)j9^ zhTWpN$p||%YNw;r1y>5w^xu(e%?uEl!t8c~;fRsVm-3(`oDU##cV@>d3Aqp`LBpU> zOA<@zr!vyOkP-*cK#|DsX2r#r)dS~7lo_#INBjnq6|$JGA`KH#t!C;~F&Bi6&5$nS z!Zu$tr02zcPB+1J$TBz{*O<5=wFPX6LmS-%XWur@hd>YO)LB{O`!8NTR}R;chJ%HE_)EH)vG?OsdlRSp=rzDoy%O{30kPsLf! z!L98I6?&G<{ZZs{d`E*CR*n@0xqi0Tg$b{M#I;9j`G<_z6(UDXcbRSsa?cD$rT%j& z>u$BmmsobKK15fS^V82jo7FHU7G7<{^0=k=v@>Yj3nb zC_hh~K&4%0Hajhp!a2LF^Y%i|4|pPOSqKYSo#%ld5scMAGJz>5F)%2I#K|x5$}&!q zP0OA;#$=RqwuZ_j^pcXz3B#s4n2+|_5JhOT_WRC3cX5G9X8B^a)_#nOAp#&h1Kk~E zlRzWUrtL>b#3cTL6?)-K-IAbPK4xh+ry@SF$1@i3^*bI16he@u0D`cHe7EOpWUnl( zE$@bW7KYH^#@GvJMPJ~;k;)BTzGcQNw2tN3`Pj#kOSlF!;R<&X+%hTO%Qj12KSjMd zgPJEzY^;<|VJlu{GT(0z1If6IMozsH;%AZmZ$7!aMqvtLGVp#oSLI-u6l)Q`xT41h z(ZG>9DlQQ+T|2#m&A2q^u=`YLkDg3=3uVK)A#T?S>IMvla63RPSZ>{Q)c0rNiGjLB zKVVgV{*(cRq_naUeJPf`FZqUAg~9oB#Q}(1>*o`xaM~BV$N$vbBN;rWoAwlV9vkBg zurG!>ETciflBs?lYUekRUzv4CTMTMomcOFl<)5|DrmUdL)m6Ta811RCI*o{BZyd&5 zgBXdX->trh14&>CL<+0ck6Loo~4%P7vCHk2h>ZID&EJzKey0q~-m zM8-ez}j|L8UZ-^CRLg>> zY6)*Dm!Nud{i~(+?OIcXFvmXQAglq2?Kme_=^C}Ly$#i{L!~? z2ZQ4smud)%$2*`arf+AEw_YL)p~5+= zd%wR1Tqc6@_tqksqEJ&&5|`AiOkMXDv62ABM^;bN(21j>F|Ke@FfPY_2`j>?U>{K1 zEX|D8Z@G_}Nf-k4T@CMEyoF|_b7NzEdJD2Y;ohy|?j#Xp>1W*;MzB#h7m3VINz3Bu z@Su^4Q&3jtmLeYF;e?ddOBwM^dODqt;PS0HL^OY$|LiV7D(Ihjom>4@b{Az`?l%Ho zcpcprvqq3LNf$1am|&bgU!XcR_8%WueL`jatU}u@_ne1jNRQMY8zFpc6YeYf5Fu%_8FG6coOh zXGPa3=fKJ*gncIWL_HeqFTN((3!1nW!7SVV8QKs@PnpL9#; zT#o!&_Z2PXdLcCQWyKx1R-&hM-`0o!qKa#KcU&9d73s!$Cvm$pm6f9q`w;q&`${J7 zxh>F_DHYYR7kvQ19?VEY0mle2xbIkq7XRM zMMV{9lg!3vrOXmqt^9@8d~`lLdo%gMXr!mi7uwXe{8ST6<1cA?HGO4k{N;6A8Doci zmfPb5)W12LVNJTulG>B#Qjf_jTo#~z+3RIBm1|c}8&WKDSTk>Fzt{q(2$&RIHl0!U z3ck(?AUHT}P?f-&Ce?q*HGtvxz(E2#84e@=n`T4h})NwF!67=H2h#j1o>pR$HA?@coA$ z?rikXj*9n?AYqNyQtS~#9@q1U>rTqJdqo%vuwcXhuaCzXH-3*wfeVI)ZNt)lHAI-W zU6Xl1;MACdj99#&Ff)W;erZXlO+=2tit9FM?f)1(T-L0UGQPTa(cC-AvGga3m?om9RZ6VP1=$BxU3%CrTyX{6?id!JjUG4dq&vDwntJ( zeI?;&ws#C{54nuTUxQ@10pM`MLxiYr&}ro~0Q0tiaLuWmV2t zn!Y(2Auovr$g0YQ07&Dh`QWPL>URXW6v?DP08Ph#VQ-CIeb#_Cbe{g{Z)nBPIL7tnIKnUaTw>FwYwoD(jVD9W3-_bt-^ zjgV@7lB*FwB%B*)cmyn%lj+q87yPn#uO*i5u6bsi{2dLP%Wo$FmT&X*+^J|LV+AX@g@f%bl83l}-zy`~d2k>WFeC3=G zQ$0iwP?b7SPFJW4Tv;hPm~M);nrRC&95OzMCxO zT-fe$@T_%JSwrpotx-Ci?EJMDnMS?(Q7M>7D=F>|er$A4L3?9!U!C>(tWpcjZh_C> zg6A8sKd&cYU-|wD*{;*pmU6A2^I{HpPMBC@8}tWjqo=9{kO3e{p|=_F6bptwPYY}+BW#=zrjKse{vB_9Yh%|Vuki@Nx4xRU zes*TptwRf&AJw$jWG}SYPen9I+;V!U6->|UqCgdHd9ys2p0n66tzkJ?&rZ~XBP`Y4 zoYyTu2yZoVR{P@`Qqx6bx~zbu(TwVLmJ)0|HL05Rk<%r%*Y)y{<~adj&UNA+C64k5 z0|7hYn;K-~owDiQ(;>A-V0CO>0_P^h4lsz!$ zOQ$o4M)*PCWKkaszQXC!1Mo+7M33Oin9hWnYvcLbVDI{(U8*gfElZ)@$3Q1%BbO^5 z;{*m4c{pbYk3jaThW9kwASD)h0^IT?#H7V#)s|gcd$gdMo;16AD%gsIrWb>jO1i`9 za;(wju7;@d8Q+eiRDg+5FNY6&p%FqV*F99iS># zj3~FWW^H>OMyxGE&?$R#S~1lqKmCd&@$VzP1$oy>*;W|ahzAf@fh{GX3>5*iNagB7 z`fjEFI8DFT`geHknE*w+c8{tKjBcPDrf)98-2y80)U@QHXelXaW#I2QzYQtHBLm9f z6b=cGkc*BEQ2*bLMcqV#e^8loJ;B!6O-MG!!ZM`EKL93K)?scm$81xD3EGP>#S7}R z3=#{|gN2~XxfC^_ncA&{FqA|V1%}@S+v58cs`-6`Lem9jJdn#t*bq=}=@j}L)YLLy zpWT@1qxlaaT=&z0Orn%B=SAen(*-IDtaP=ZS@1T6x`lQN_!}GcVvYv!ZF7$A<^S+u zd&Umlrjrdt+m*S<#%--LQ?iTO?HqED;l2q9E8efXfuS(7mdid zZ6plnPN!~bJ707`+O?c+H*G#|pP7!t=G@ZzhR}7!Qn0RKIfiuh$=7t}hnsU#53FNWOv<6etTw15YI=Oz7k#ImYx3Vc#ZqIpA`g>MTt3SZ?1kRS(UGaXD^_ zAZFX^AZozA_xsYifW^6iGz<(Bg?YaLC8Ycduurdx7GN3yalK)6bH;EE=6~6YZzgd? zH=HoT;3aOx@V+4|q$V)7Qa9!#xx9hoe-_$^S2n*cXv%X(4;_xV*+FF3o$_B5andCf zp@L!4x{~syBPQS38S)0=5V;qHL9K`~Fii6@TRajLoD)fDWFU6OHr5eWq?AGEaTZr- z>XE^Bqm~op<#Kq%<;~NUR02S#F+&oFX_fLc`;m*!jv*Tlah$2j8jbzBY|~$+fNo@e zA<$-799T=}h{|W^RColI|AANrrSG!)meTAY$W$#)V50ONb@JRp^XeALtQnimcg+o0 z8Yr~fF%l%NZ*pg5`m_Rlo;Hn=q~GX|WKtme-!cDr0p)GaFcJZcADud1O zpCqXOLX-S6s)k?A<%m0}0{&-ZbAOlE4lUFOFYjY&0Qv=G`H8|Nm3+aI2F=588`Mj| zGm63t$-oL_Ti~Myzia*Ifm3n{6>MFw%1QC;l0aR$Fu3FOhFepKJId06io*(JBcmSA z8V#{ozBU4Ns^E%}dHt@=$;!a10-`#X^%g};fp*DsQCOJmh?5Wb4;Z4wxU5MQj}p4C zbcqw&G|w=j33!>k4zJaAOLImx0QahjLx<(5C__#W>NqqxkZ@Cd&He%E{sk=2+C-o_ zQdV*kr4l5$Q!Re2*_@?ogRf<)=j*UGr)L7;yaL9A-U3#_%E38V5hbtG@Bv#pKrNpr z5qY2;x^pnux8AJlrT{G{4BSX+Vy-F0V1)W{fKT$C^s(k2apJdn&ek9y86ro)95Gtf zT-h3v>E@X&bq`ofH4sp#OMd8*VLE9%n9!bpO`<2!yD>z+}X)?984kU0aN zo@2*nd#yS>*Z|LWAA14B#qhU=GOa$2X;Kl{;RqH$u#3kY|cWiWG}IMY5Qe2PLVqpU|;nTxYqrP%N}?OP>W@)vtW3)eF!ee94{^- zabWA8RTyoyOHEHEQ2UH0Wcq`(F9NjDYnn@Pkg6Vlyu5OH0XG|E0GDd7DzOn3=4#Ot zMow(~A63DkK4ovo6hq{Kp|0fIA*xm@Eb^AxL3)Bi4I{PV1^Rs17c2xH!$zxKX%jp`YDAFJAcb`L|c9 zD+`fmDj-Z01ySm*JeIDintIn~x54J%`6agtIiF#%#~X?X;cX*YF;x}fkH&AHb&*{8IRLf1~YQY08q|D}AYXoLa@qH?REcdidGog`Rj<+(8Ivilyv^$g%kY6!NQq; zvQVW;Krrr|Wlw(k>K*firS9ABFA+ca1EYtHUhT)P&f4ZzVjMsBg6~r&5Z^S@@3>)G z)b|8m>={|XxF*?PV`_xdvCe!Kq${UI>X?SUu&&el7w6FtwTO-n6bM+j{jr6Dd>f_3YEYHkW?{7)fX7IrU ze%7DfR}kp9t--yXipQBy|a|BLj_|V4?#}faA$3 z9kCCHJj8hkMUBN7l0;K^QwgQY7+?h|G3FRTPq{hBayil{U^CDdrxBZk*2y;ZrhS}l z`NCpnv|hj;$J?H;hH{~lLU-Ji@n#|WKGtK$X8Ce|h8M|dY0Wj$Tga^yZk2`K#qh!7 z{!JK#L`NmXF_O70J9JyhXX@LxqCX@{uu|zWYDhIG_J~%Hlz%C`De6isoS_pXlPWRr z!<<60?QYxJK)7OZ(r2N)?^x!uB569cl7y>naI3Vu%e4E0M6KIiny4BC5QZVvY89Rok2RYh&npJLO1#?l)nlVVWb8CMieZ#iQLE z7<}ZnYyw(h+YGy`PghohqGD~z8!A1paOXhaQ68?{Gek=82=?&PXt81XRGGCOJOelk z?@(QhdSYb;@fOz3IYHzvzY@ag^}L<9U#EW>j=96nR&hya+v4Kj4TokSDF#RwEh8Q% zpH5rquS$Ssf3YI>j1eap@SW`$%8i*m8hhjV0_W;y)S#mAS2e4)2$(Qp+>5hF87O8( z%9lVX$7wKA1_{94k5dGiFqSVeF1(Pn`GE`VbH8(cW61J|-t32?P%MNoJUoPI4XNzh z#LKW}`j4pLanA3qt%Sw2zdk96EPD^!Zh#E*auET7W;+3w?wTcX>^WFlwrSciRxH0y z(pWu{tP4Dh4|lBcHAf??d5(68(Z7W=%!m#wk1?i<}Ju;an~A*qAs^v?EW@aFYI_|GM-`4KvQl{>1|OD|`BE-`iqjZUbH zbw8>xURg6kT!E`qNXZ9dN_!Te=7A_9``68fH|~XX_Vz`d)1H9+_|zhZQ7z2fy3bwW z5#2fmTERLqSNXjmUT&BuKSvo|`7%WrKsr03Dq#&cXpe?sh4!{|)(40p#HEk2vh4Rs zp@JMt>M{RAKa@L2k;^zfm1x-_MQs>$zk(3uV+9#^5ZhN% zFhSsU@epJ!rEL6677nZFtiXjq?vfli9Lz2z(71C8qOTegU`jOHF70Afp9M9lNE=_8fPz%8$f+#t=;+0QOKTmNpWFWh7`6k0!Z@C@W0b(DKH8S( z?RlMPMifBhg?y{8wvEEb?}yX|)jqOgUNy3xt>b;*XhsbZuw%RoA1o$z0Zq+5s6>EQ zt=TOcI|ow43|}j6v)Ig122kOMb`2Z3wBJvg?N(Wdg;_nrjz*(SC_$nl8f3_IB0vbZI2!M<3c?Z@!^v1IdT?p_s$9jP1SZdBuNQ;~AuFO%ekwV`Z)? z`U7ywpW92-rOTv>z)W!%p!f7uKK(}`TanXYJT|`(d2%Itx?4=@wf7_K%~Aj;O6h@= zH~_HI+kvq*mv5SDkmKf zs;a;yZ4V2Hqcmq1(*TQbQ&ujuee1dwV&4W$sFQXeuGP0#>}H&A7C*wefR7U|E=!<} z6L_%4@!e*q8y!t;LxgGOk8T_lv>-)8JS?W4jy%gPE+UsT_pqMS}JE_z1teh*%|+J4+Ar1L>&O_jJ^=iRq>RsqjgvI%F| z;NqT*(kfT0AcC@AiadM#3T_|sC|j}7r=HuzX*7G`k}|wkW@=H*kQDrE;X|eK-wuJr zT#t{BPY&@06Y|stl#iFssFN0o|CKjZPVep4xM)2Pw2z?Hv#kRmsPLFd>6n?D{mgT* z)f-49TH7(Q=;g{LKS84~GI!8;U02bzZ;Ps3si1oWJYY049hBXZj~TXsQ7XuRkdIXS zb1gtfzJe%HRVx;n%E^Zfd$8_L%;% z8CH46oLaGU_*`gX%xY47EI;8)fm-i2m2x5REv!7Lf|$Npm4HkJl0islBcMtonOmlU zT8J)fZi18TKcjjG*;Zu?Tarf|KYDWdSj5!uGBc}xD(KbuD{*6;DXY~j))HOFgLpc4 zEWDXWA75ABJ2z+A0@nhj_gc7GsPU@2AH56>UDZDyY5FNTO5dvh5UvzWD-xZmiqr(M zaq*!U(UAyKR9y0S|IH~W;UM{w?7d&+8xDsR(@Fv115VQD>8xt>DF;1=an#lWVy1N7 zqHwsg-w)o40sE|^(^|N%KuZabn3Wg}l9F~mG@$0BnO|5WHWf)jE`j`O;1%LwFwxI= z?i^%%mX}*q*YmMzLaV!}?UkH^h%&`^zJ04>B)eM_l>ml(12jVcnAHG%S%7xr+#A5G z#HFNb38!J1f5tDbE3L)GCsPM3LO|A69&T<&qsZ>Zvo4_!u?o%hb)6*Qi?0x86fI9F zJ%sEU5O8+Z2+G+B-H-lnI(-__uy17jP^hL~S0iW$yfMbaR4?~4RmBhx6YsQzW7{<_ zn{6WBPARHv*Wh7U^TpNLl##6-vFB&Cw^u-j?lk>X`@sIAdLdJrUFS0??>l+%&sp!M z;e7bNg74eMC6EsyipTL=2G>Dz=t_K`5sJj4L|DPo1DfWAX`2Pi`aOp8?*e}n=-;HG zP(p9=x^#{aMhj^UpbF>IB~J@%A26Q372c))8*{xorr_9C80qeq=)eJEf~bBqzN^CS z-%NfV3GViW|3rrWgq&~Xstq@$mU8SLAE*aty499YR;8Hj&Tp3?nax$t*A_rWa|R&W zZg9$4`Z2r4s0D~U$P4j{+_K+ z5gyl0Dz=!_Z2`Ww0qamhvz#0E^M#mVqX&?;V8SuNU);q~pkhpX{<@OHrFIL!5VC@R zojNmXPLR1xTdRw!3|f&}slYfKaM#qWc||pW=Q*q1p}8zqlmKWp9MOT}p;)PJ-evES z))*~ zV!nXHOLPr^FsJI8?B8_JUw*R7RF^~94{S+4V!RWcJ;}IOsI<@L-e3!6Vb<>1+^Cqe zJM`+(C>BV1NhsMwnVB=!_>r;D*@z6z)lFv|yTG4B>1t5!m~kmZ<~0Nu_xWW5;?&TBJuS^R*< zHr+N^?J!4}uL*V!-i9RbZH`2$FmfJ4Uy`hHx=u9Ps|8>l(t2UB@V}AxRA9?+C-}bV z%}!4W0qjES7JPZ?19ERVd?qs6ADQki4kD6J1WaJ}{SK{lKHPPZ^>)YX?zwm(vG{Ey zx^Vak*xi}Gwd-Lho4at<3|Kc?I_xK>6>#^;%a^~b?R-2Ato0a;Y)PspW49or)uYMc zlc4aIItFSM#@yu5_iAe+WWY<^2irv^)ejHH#zhau?`~ZQStYY14vnrK-WWB!T@+Kl z149?7c?====K@@pDK$0#hc0-1!lf63)&30xBws!-dyK~7q|*;+Xh^a*F;zM;n1n1C z6OZzJ+0(0|K^F1;JwhJm+uxQxWtES|C@O)^lNd>$43W|1y%&CP9$43_d@Vd24J4OiQ!0LuwV^q;{+e#yU_3%86MBFq z;N|p@0P1iNu=~|k6%|47sk0To{B4A?Vfz{;%G5$J>W{u9Oy5mRv|s~lLux15k?)_W zf26l!BU4mK!xpYCm&}NubVAl3mR&1pC@M|>ky?>xTD|Ep9m&F#*C}c>3#*0_MB!#c zU7RqT4!ATbYMByDdtTxCR|Y6l4N`n8n^I7)v7~42F^MV5A!$ND`!OW4suA()=#y@i z{^pP{X+85!o3(so|Fb3%(3c#eWCXUMIW3;)jPk!r#Bw$Grd(l&3uCHSP% zebsIE!?68gadM=?7`;&a2ZGojtav-W&f>1rn?fhF^dTj=c>j-r??#5Y!TH`erDK9e zIy<T#z@y zq|>7&q`kpecme9w^=s}0exo;VVbpp_QV^aqJkHve!7>MP_9joy*%mj>Sm2%x0CNng zuS~D;zPHdJb<@rxnlZ-+;(z?g(XSmd1`Ml54|@xPlawQ&tMaZHuxZqg^go;2Rm|ps zWu0icW(vk;Fho!fJD<0cwmvITbBYY_$Wf17755v+B;)~@?18$^{YsH)*1mPKoS1u9k8JP4`tsFB}jvyjR7YC1GtSG7tRR^Iglm-6#%ruQP#K7i5)S84waL$UwEUh_XgU5x*dIsSjWJDsnl z8<4@^Boc4{l+<8g|6%q&bnyQz#Kp?Q#P&~pe3m-6r{dANECiXCpMq$Vf3E}x3O2RK z8e=&O=mdF&Li>wU`+O3qS^D9aOnPyL*@A#1c;dVQxe;<~Q9gby+NSURm*%d=dD+WL zmsyv4*T9ZTPxkTSlU!*$f(%zoY$S~aAsT3!ZfZW2AO zT4M9#;@i>1)?MToB8#-KN#xsNjPwDBw#h=h$j}if^y%y8<0cRIpFdxR;M)l!pY(2z zJmyd#13WCjmmyuu*7vR0H)V&m~yv{2efa0Z4?l{ zVIXy|P_yyFk`1k4Wf8^5NJEdOHD2chdj<<96HiCU!%l-Z9CT7S5-v}|2$2+p1CoV> ziiL6i5dQco=f_ITjjQLc1PB@YS{SOEn~7kZM6yaQ6dyPcEJ~}(-wmXnNrIj0gA8~P zVH#y8*pu(GL(Ct9kmrAOmM>3*p$nIikdj8?WBQGZfI@>>L{>Z)KDv{5+j^^O=bB2+ z;s-+&FB}x1VzY*guaT6Bk60A}2P=yZ5@9@z95yf@B9A07pTE{X@|R0SQY17HixnGe zI0(*0oO$kKbx8Wj0AyOJdh)oMnyQ(KHxvi^f`U!~5gQ3J`HJwtz8^S=+>JbRbr5wJ zwjH(`cJSngu?5K#mgf%7?<`|jR5QnB$-Xbb&BHCg zEg_XxBu__Dkd;#`Gh1|&6u{_Gi4Mgjxl?{}~h+y@q&)ob9M#NeR7H?nt1N>9pK1(uaaGoq>R{b*Hzrx?yNEhdlA zqgxJtPRsD<@F)FqFZ;@?-GR;f^z+vdVuo&d?&DnS$T6?8ZT~0a&@b+wTd6ZMBGq)V~9~twQ1HK zt1}B6S43^kF?p~3*YGmt13r4K+Yi`vgM*d~Udu%nGPl=XDzpFr!?|;^9c@rIVBGLt zmm<$M`&)e5ix*?BVDx2Dl(W8~6?63is8U8Qz#TACFN7c9m)6{te%ilT>HWe!3H8xV zkOo3*Q+o}})|5IkaGd`X5Mh<_i+BrEsa~+~(R!^Im~H14xmB!gEhL*WW3rU`!I%K? zoI1JV;5vW!nW#*}!Y4O7V3cRA;Q7G{jW&qgB6gpMlcsn~uM%lz6QxO8qv_iZzhJLf zv2sO?CH#Gr2k(J{Yk#Lf1`mD)lA;I~JXBahOsY(BQxegqM_rHc=#CQxdfF5VOqKs> zpl`^y--$^f9Yp#e#&!$gJ~~_i@5a6xm@BWD5sQyXM!Xn~g=JxZWtLN-nDzB5b2Ff& z?uj*KEusc$muN{$eg)`;jv5-wM=cGTk;*yAoPs*|Xt*sT8AscZLa*sE>hgqb=*EwJb$7gzjtksnk6JTuVmTqnbrGBuE%(coqrqNu&R7lX zB6enB*LZzXGt)6@WYT95=YmDm%H|iNNvF90UEWI19bs%|0T%_$ZunFh*CPC&ns8OHBNHkV3j!2`4zRx( z&o@R_xZ;_tKpVv4nXk|%y)u*roz+d?;QQo#A*VDa`NsZ$oaW>Cv1TS)a5y^upjy|F zc;BZ`SY3ls0oS3>yZv8>nAHZj-t}-EUM|}#-N5iZZyuem*Y$Xw7#P1oQy_Pj+cOr* zL#L9*g;AZ^k@&wSV_T$Zo*Yc zOi?uIL?NN76rkV4js5J~6K=ThJC>T?F`Vzq1M&B?)wFS)nnjMB`vDizm6GtIry$cE zY-o<>S5Kz1Zh~-q?+!qAf8E@rs&&fkW=~%d+NL*{a!6>3;Ofu73JYOZgQSXym>W`^ zHnM*c2+=vlUV&gM5V@qUKt**azoxBJSOZpoRT_)R;m+LE_Ut>!e6C*I@%%JQL@{;W zeud@YlJ^#%dQaG&YSpq)F+%NGX)A+%BuV?;rc$|J8#hT%fXGgjE*xx-wE|V886m#YuL8>N(!rsIh!BGVX+UPk zh|gd)f>q(f-pqVVXf-t{s7lEsGTs)spb!kOsg9@i)6s}XREAZ$1sLO7z#jdblM?j=4I))gNvOg})#_Ggg)VbCiw zKfLSmfw}7tn-9C-B;o1y8hjuDGEH&{axqjgLFt-{_O$8Tajrz8E$EovwtR5Kr|b+JP@vQ7S&>c*_dTCSFS?k7uYinz2aNm{Hlm~;rNpA_>_4? zEu;p_M;?a8(g$D~wwzIlpF*nyS%p7l?Wq(PSARkp9FFHZbjbY4nclbCQ zysg0%%QHiI*WJk-dgczF(1}HBX;J830V{C*Cm?sjb|F*2!>X?iAe8J-Kc2)!nlhDd z?PE$mq08l+DhMJ%wy#TVM19jKYzW}i$qsK^WB9IzPR8;NW1kCUu^ZnF89o*?4U`5< z*f}zg{UH8mTP#6?*;K!VRRqw!K(PY3J;EO*1gt)C3ag~z>vFgxG{ix}c0oOIkP0CI zAS{^pK2@GO3dFy`R{S}BlQp%+eouRmasK+HZPh{|&imqUy}K3!g>|Bs`F_NE`0Pgg zxU*wVVWk!TitSQa`GK8A^c#|h*T&RV!0wVc#j1#iP{)J`uzNl9Hj35L>&wuj8PyQE zNN=0|#>Y0op06FQUvXb_(3X_qCE%!cL%B<+hPeRFutoA_N4QT=#C}$}EvK;Hx1-w= zu5f2g4|=hLR@CYU2CpP*e7?0nKu0sDm=wMM9 z@r%OLk9GTiBUzGW8Dn@DrvMM-DPgcF*il<9MpGI@meh5F)UagD?W2gndjolC~xL;wP( zpD#4$$4?m4X@yJ}+DpM(2+GI3`cdD7Cx+wG!#F@ADXWX+c?sa}A9`H&Uj5Q~rcp@8 zE&2R4U63<1cq5$ikO)YA#%mYf1ep`($6~K?Iep0EDp0Ia83Yr*dR-ZavbKx2#Qo4E z^U~?m@)u`A-!bo&<_)!jDsJ$AZcMQFD$=z5kPTswu!uY8`WDjCmok?3y5t8nscY6p z|DK)h-`*U&+vhY70VhLHJ^f*bXNl*Vyk7)zdoApo+|7PgT@v(30dzCqz5m(%GajvtPl_v)ZfRPe#+MswG`FISNExMTQ;-hWyo8ivn$R z!)l_$#dVqVf{2_<}1%Vovr!BSm+>=8`l-RK3)zix^9= zAAQOqiL-wD4nOfj7+8W57Wiq(Kuw$pVYW5Sp%0i?cVRjW2U&c^V(;gvQ(Ql>I7wuj zf9pvDT3(tz0Mntlc48%!N`yB3gnty&7VbdOwm66>Bkp?S3c*pJFz$g`UB$T_9gQi zSJ`DBmMnaX_Yf!|6pe6f);(^JZY)rXW+TxPleK(i&x?uuK3hEe&(2^B8q=_?mMm`^ ze`jN2%67sG=O4VRw+8(4s43U_Iv|!kF^YnMypCnFCgx?FU{3N0;84|~Z~`~_y$dXJ z4T)3I(M&Sl5vFP!yXc#)l#P&_s}1*o7lH-=CjaWLkmR~wgxOH}dS^|S!$9?<7gIM$ z0szFnkN@s6gHE9MU*JmBf89dn_2CQg2Mf=Z=g?osJ)Q_L*ZFxY14*ixi?O;;^#nU1 zam#YhV}--(Exh1pkL14xkebfQV#Dn%*JRe!|6Eh>k&G3FSziZ1b9-i}?;>8MJw|-0 za4#u|;NxCCn2Rrt7s#Q1>`Ud&KZL>6BgMUP?8I16B_a*4+2em6zIYKcL?FwF|60pa z8GDx5po|V?9(9T3hkuH-cs*6+S4MGTcJ!Y-dj$gjRgSge`XY_?y?1Slw%4XH{Aac! zk2rlBLjKPKF-1xXG6_I>a~MjYt3FYqzd%h33t#7@Iq6iJ2pkrHOgpJRicwVz6x@9+ zb|D8uN}JTQIgq?pISUsr2?uK}Syw_gOqD9k@qXxXt%I-k=>Skl$#sxnl2WPsaHvXz z0Rc>Xy0{N%llY?yQ?_8*h55BM;IBnNCt8AbVP$uy(2&)MHKjS)M>nz_KSb8uSnF$W zyxq!*c6gbl+jovYMeMdfMSK1~a^wlra8Qs$a>&X2EQ_hwC|X0;LhyUcXXrSHQR3&~ zZmG@QF{zSZSrXKJ!L(u}19v8Sv*UDR}coe*l| z;1uiY7!IEsGEyn=hnkX~7+d3AFMu%^6P?85V@-DjK?K<_p>2C=ZHUr$umoaU&1|6bzRxH{^rQ=&|Wi^iOn+ z=6tM1iNK4KVnX6412x1eg=$pHAtVhMl+;T1q7o)^kD=<@2ahRt4d=4>f=(LOx?bjx zKD)X4>CS2sAPz}iI!-EHuyC@Rjevq?7gy3To7S41do9COI*w*Pax71U7nif73nDp^ z$SddqbWP`u99l_LA{Yqi)ct%vz4!d!8oQSDngfRPhp)T{3Ks{aMeqAxGU^V;AxzrCs_uXIkrQx3+uTrKHd9BCGGCNAKI z`5>t&6Y6vMiwc*R2K-ed41?Y@Ff4bxgDy+aX1bk2D&0u;=UkIxADav8vLN6O zxHR(AN5N`iAaz~d`%ka*u$qZO`eY!if?o7=?y8a-aBi}x%z|V3+EMpoV@`6~4bmjG zWo7ql*{MdOak;vC?h%h`{FVIwaL5370O!EYxy=!UfD^mN)Vjui+{j-MWw9pAsaZ05 zc(lZrv!$R*8yC!3Hlufm1+>ik05$tQ{f96g_J4%={LjP-%fA%KSd3TsO!E8m_Jic1 zqhsDuG4FkvX@?G?=@QQff||E#0HuJ;%1gOE5*(_b2Q%v)0ssiWfuj5eV&)(E=Kq$M zVPs_cmms0PqWQn&HmKK#?H=?85DSs&B@!;bP(1HK8OF@(N%Hv}<6ilP*m-9$FrZTV z()<8LaDw{$xM2K4b3?fYbIFNjOh3F6tJBw6f}`3cD2wb`7FnrV6=qJIp8}`1u72=Ak#}i`?%Yf-1(NQ8ynJX6Qsjg|`@DeNss%q&`9^ z*dd9DcM9r@i3|E7V}=qb0j?2Fx&8=O znF9$>AQuP?^yk2KpXxXF)laj}=rV6GT?H-V8yJ+#)E%N~FfmCv>uFeCUMPOq2P5Fo zOv>uy7}>4XGX^;}2&CfCP=}%_P{X;gDyEt;Kwm@_KVHK68wJFgOZ~dH6s?dRt<|`< zw@SzlQc^6IwpFWC_y26cY=}BzEf5%G!irSsvu1>n_?=P+6^7cNB|fcb!@LnGsFaAm z8Y$Xm*m5!*8CG{blmg8|DB=a1Agyks-_Pj~6yi-JNy{K=GrxOzN-6A8tBR3mn5MR+(uL_%S+ zCLxB`5Qcq2%oUh;!wd(k^+641RJ7#VRi;O_`q3lW?4jce3W)pot(3SA5W0C&%<={0 zYaZwVant^>gJt4kcv)9`aN%s(@8S(b8dS=F)$5-Utxr ztG+8!6yX_ZbCAyiL{gY%`~(r8`VhtsC1v}HgX-jC?gC#?j6BZ@yu;V}wRd<2{5<0fyT|(6#t4X<74`y za`J%%|K#|dOZYYlJv-zABw15ZZC&oG9Mesw&+OmYqkBY${8oCvb$l(g&>d3WZqZxw z6GoNI;l&Nn-C|4FgH2uj>GaF_tNW!brflc&k{(IqvEuRAP=_e*rOV*1ACWagq7XI< z5(3l#Lcw>MkOCS~w5w+h;MHuNh}Y59Zj2h(ftw5+hN5&@;U(}iR&Ec^yDuxkvjZB5`IP;;tiq4F09!(ud8XyXHd*6}Z%qT4p zH~@{xNOX!~Ccn;Uv+JbrK@Iuitwy-C8}poI`5}u?@dl({hY4|vFv>s|OK5fs75%c& zao!SA^TAfuMf_0lXP(Kbr_A9>Bf;!yT}IKz$Hat>&GNT9J9ddevptZ^7z12Av%>|N zd{nZQj}Kayh45K-sb3gcv}SDdIQHq+Hk;^R;3EPAqD|pL=IHsM-IyE}ZQS~(kPO+l zL7g)E;4Djc*aQ__ODo6lS#uHrw8hed;&wGvX@=3J*GXJQ3R)F&f=cU{qWow^*HN}{ z7O}f2JM$yU7`FZ5B~6tP{Pnh~;+RlKpv26qkQB_u?O)+K^}(fAsr?$8S;Z(Fegt3g%xo%uhb8T`56h zJKt(2?A&^9pET}{b}T2ALfN7?sivfxYo~XMD-K;eCl%>yJ32CbnA@^2p~{|cb%3>B z+dufxhTo8TC;a$wHef7F@{(~tO=!u@bh2taglp4)5=_9Z$8@(O9oFv+#4;fqk0T-c zU$7xitZ7acoY+@aIMO`zcQ0Bv>bzlBvyNNARxN2jXHE!>U(qrP;F)m1=l$rBn1QZ~8yM6U-24uYA zDyCdqqZZ9Poh=8ox1uMab=&3oV5#b8gg4i+9@amo383ZTfR|Ivc9TZiwXnphmrNG~ zT*`-vBJB0hWPaHK`|sRm1@AUnPnqrFi_n4ynEN@>Kp+CUB9C-tw17-Wo?w~froUIb z*y&%0?A)jwZ~7frdqC&NYoulrOjy=Ay8IRFY035=Mi1OZvfWm@m~UT89~y_bSmHJG z{yag?-mzB-V)+@1QO{g$>r7f*^85hb@d%ZOEkwsfsg^%v*+I-uh5cG_NvKcWbAtLR;uMEo5ti zV_~G4%Yzau{oWVP)#f~Ya_2@#%053oSW%*^E3c_8U+(Cr&tI;pigot$;Px($l#X#r-|JO@eaqyOV+~&?%Q;Tfj&dEY-jisugtQSl(FCJLLYcmzMtWJj@DPUNe0UJo zaAUnmN~GDGOIey*+xcSF+6I&Ti*czG>MzAfj8wwq!nq_2<(Y%2BbcLfMk(~)bu6o# z)X)=s_qCpv^v;@rd-B|H5fO;a`jdWM(Kf>!`pv_WVa?&RVLJggGZR zniB3BqE4C#U7ddQ>=w`INyo`?&CV_KXLNcog9qT(Dnq(XE=gg^ENr z_u_L|YzZ7`rNn^cgm;k$z|2uur^8Th5$ZlXLtWl(_g&;$P?Heh5YUynwIq5kdNfY-dRA-FZS3KAd6f6UI?Zx81 zXv#BRX+NKm%#POL$_*M}gkRSorgLr+tY^&7ZJ08M1nQ^@EP?G`TQGXhp`OARYYptYdGfAj|Qd(SX#ib-=7oD%4gd|@ow=xIV|eX zmEev?BB}5#Tjy7M;j8kul;xc?Pjn24MQ>#qSWEEzTzZJIBfoxTna{m`=OnLKH~;Vs zdM*cIM;!r`5x8NDTzb6IV&+1d7aB+KtV7TDlgh)LDqPIYlp|kx0Rvu_S`!3?K5g7S z0YX-6p9Zv;Do5asD0HWXq4tEH|`vCdeSg~R1 z?{Rl&MeFaQ{0-YZA@U!m)OZoBFMVwaY1DM)W{UON6xyOnAcKmEn?grKzR&xe!ybgLmhJzr3I3s-{9ks=zxA={ z?#k)vDmm(!>goakz+3|+{fE*2Kpy_vCByjtEEz8qSS6(;)b57?9Dh4xYeiPYlkIHL zWZys|{yik*_`MM_f6QVqMtUM(A|~L0(b!P>aI}5A16eu#H+iH3iqxJw=EMpxD1`~t zi!w8##|8}>9j>mXZ5&a&CzYG5G$-TfZjYUYneCnLXG8>j1_A_#<6+`q;_5JM^j}yN zGxL0CyJ$5sGjk+ZnKLT(F%Gh|3WEgx1)!M>C{LZhlhlXx}*{YMeV1rzyN5;(>v_w}iL^2n;c=X|KxspD)gOW$(yNO68mr zg)HhoU%)`wI@LSI45kY#q@?utx^*=UaK`;#7|Qp_FkNe@c}DRK3K&UzzbuICrN*Ex|pQNJYt>_ugz`Uke5178C{6#GcC*6g>27WLXIi2d|v&Ih% zi^^dmB?^qSB{UOyh0hzLq#~UoI44StKR?ljOI4UK6U_dM=8F_(I{I`Gc*$ed7-$wc zP+*{OTzwL%4w1YL3Dd-c{`s|MGtR_d<_?@t&Prn8B>Dpm9=(9YnBWA$hl((R;612M z7z#m}j5sGujVM-0sPgMh7${D>l4SW8R_IEYlAyFD2_r;AC_DilE)lK+nBru{;ja-; zXwWG^mp#F~RMVo<%2oVpmtXBDtyyG4hurtlNW={BFI&Gh>G+64=+$Gtwz)e1VBio< zw5e_w>fazfwll!H4Gq9It~3|e!#6cF69s;#H1aFf-H-(qADQ0$to(#PZb&9>M1H$V zo;QZ7wqUMGX>n}`2i)`=>+S4R6^s%sHFY&cg3h^ zrzEKoSzKDYaXEL~Y#P+1p)3zyO?B~U0T9HatmkdQVO?#L;XuN%kIE*}nfTkj6`B)Q z!g_g|-ad*9J&~x^ktKJ(+KYeAR;<(`vUF3kz1K`2&upv1XzzM`3~M2S+>9O=u!Rtv zi@RR#-nQ+z)M$0J>fvnp#!L_uEQ1hG@{*gc>h(PKt+db$56(?Td0gK5YuOF}dc3Kf z;cI^%%-__77(3X>K>53pCr^T0`cmn-_6+u?yZ@o2yfBx$$@5G8J$@0eSDvC$=`N3_ z^^l!iU0GRXt?ZbVZeNuqQYN4y>Wki4Z0!dzrpATfd=1$EKpHF-BC<*QS3oF3{wat{ zQ9VbvD4@~ytWpAWx zVe`+{eYPemj-T}WI1ol^+P!EwE>6?=pJqxXMriv;<|mQAhffnZleh&dydUec6=sa& zyo1{gTpjEqY<*pVOOy{dY>jy70vostEVkupwO}iMyh&>f^BZ{4PXXh>k=9?q0s5i2 z8#t`zBx^v@r`=arimLVe@e#rJ+ytw&z@B0ELU%$7-e5t7iArs%rS0|TpZN>||H5|f z)Kfl>Zh;;sJ%@7QpT6o{wkkH*=v{gCVX+awD^=A<#U5J>TXi@RwZq#X!W?{V=ma(( z0oQBIhhF@C2j^f~wNh$HI*ailDoUz~bd;;)Wy=6J4`a~@C|C63eoNd^3G&BqZUP2g za>FaJUq9%0--m;G32l(_*Ii{zZdAzi&6=)uFrLG@Vd}jo{P9#C@`li_tzBGMtR=oG z39$HfTqH9Lim!`o^zjOEruk{t@>!1j{M*{LT9-N0VzMos0MXEK$k&fHeLb{ z{Wd+oHpuEUFELuEsHj|SCl?bbBYbaiD7(~9GREK-I>@Zsyww}Zh=7_*YlF^)$4Qr~ zdP3(U7f=t9TMsYC$>%7+sDBQ={mQ=+PFrFD#-yZ`HcjX)YX=CqJTHN!B*5w6%xO)W zI9a)FKgifD>rWd))6Xfbo>qx`J9DkChr!Nep*6_3dj6o;f(5y zGc(k*>TufDtt$WeHpX%_K0UsSsR3s5F!=$k)3V!kmwXKK?s!$NS1>Q9zim`SSG_4D zgn-JtkERq}^4IK|1UTC6kTO-is%&(9>c8Tax|9ztd`aS8QE+dNmW5#+Ad|A3wY9M` zw-A5}V%ksZIx^Nmcug*2E5Z}j!GCQ6Z_0A%%yPb-JdaT`xL@MQ5Om`CKn=l%%jsMj zHH;wSF)g1T0jG)#C)SoXFP=?UHtTUWWZna4f5?iiZ9 zbY!1$>7NiC@o6Wune-ujb7QC&7PM8gSkK|+SWg@?#j!qe%@>)QHmJug8quPcm+!l^ zzOt#g6GXX({wmPwHQ3cu)Y&PpcL=aY9x6tVTH<$yvZDLa{jynS7(*$)p(8ZtK6H2~?|Mn{d z|48pqQ0dcN`P{4nfn^AuAj~G5O?Aujg4C70nZ2~~teO3L zU0jI`)BEFg2s%9MHl`NjHxa9_^%c3P71yd~YhI!C%wLqxB(qA{+mqBwu~@l*CS-b) zHL*CQedMOOULDFrX%0bRNjgibjni6MsyDglsigjGSXpbS+;ql*CDpzX!_P(aA@b=| zwdF=CrL17bYKPr|0!*d z@$%08HokEnXi8?}d2O4rTvRBk#C=;)yQkjHPI&&j6a>@cfW0MOi=-JSs5-zUqC9Ye z_~^P_4tc!|vtu_BIQl_-%Kx{0s0S48kRY{pdQ2(Q$X6iV(U{05Fgbq^;l+`wACyO6 zaCt8qr-s*-7UN|27N1}m+KChM1I9FOVgK;CD|pY@NCtdESh)Pjh?#VSG6OEYesg0?tguf_=#*eGMG% z9=Xrc?5_~qBOnj~tC&%Ti_M!w=%S$V-#Bz5QRgEFFd{@O(5TypKPAH&z*PmT=;Rdx zm$%fik`fYs#5TB{8|Du2Q%VX8X%kKy@6U+s4eGihof(Xb>sQV3*+}C!Bn)Y<;`WB?NhnN=j-gb^VnjVBh8FC5#e<%!F@w8cy??OAFNVEXKC#x$Ike>(MOv4^Bp0h&>nHwNrz3>*jU81m@)B0Uk(&^@ zIxxWGxp;)HiAmiN;6s&4P<+N_r|psyQwFBoRK0I`g;!5I-MRI_llglWzH@-`Ni%mp zw7I6_g4oaJV`YcM^4H37ICOFZ{7z^HyXNAL7I^H!bQ_R7E=nXHiKEI2M@8T7>VC`) zR;r6CDqNsvgAm|vhSGK0-;pRwkP$=TcX3=Xedz2ypBLKtpqiD4FS;iiJ3L=?&yVUR z8qkP)Cwu5V0Wt5Ctu&@E-#nqRP*VZv0_hIGzZ&&jS|W>1F0ie^dX*_X$9!9q;Th@K zrjpTP>aIX|*=>7PA9e07=rIOnoUjkTz^XDc==&Tm@ls^6aBb>r0Q22C#;uZKN7mqg zNOiA}!b5#=m`dfqX3RvNG)WL<43gYcO0e`cAY5@Ru=YfSutVOSJQqC@TIhDNBeP>< zA+!S06Rx{N0k+E7JZ)u=q^~HO{0q1&!D%!qtXf6{b`=3@G9FB6QcXH$l-8BG_(KOM z3p$#am3}yv-2$=L+Z<}*d}YgT!z{iGgtVl&*ns0yk{Yhp>)8$PHUN3Eg0517w76JU zT~B+dN1vEVwZMWj-qKF!G~j+jC#Kxhe{)~ZUs$o28j*Mns~_=VAcXi79LD{Kjm6&0 zHVCXDC_xm>mixWd|H)TSqWwd-um3nzBnODXW+RAQxn84w_xV0Kc|zyI`>+>+_G3?L zLlTNW!@YQadnE_HKqsA1qSw#-U3#0IX=XjnW*ApJuMKtkYTevEMDEZM-0Fhxdgu31 zIk@%LY|S7!Y`6{b?I)#m?uDbm$$ZFD9;Dau4OtNOn7Vkm83i!HM6GBrSa^P!cK1S; zHRg#Vyh$6v!9*{%-qnl|BzG4F-{rms5=;kE8}bCuWAm({u9iO{>V#r0 zV)V%X2Y_{lsg*89E#%AXd0Ruq}wW~8t^i^EP3ZzUO6 z(xE+=Ndu#(JV9HZQMG`-KiPNegY?|*4=z2v;=sL3sn)VKHZCW3vu(98C2ys&u4*F( zGfx% zw0OFtall^yM|XZJ;+`I!zl?~CuGkdjD$^xj%N;_#@!~|UFA-Ln`&DRQ{-M9sb>*$f zK2YTw5K_A-Aua*y7i6A4LgC4CwY#DCvO{{etP_Xzs;UCKcJ5BUFo z+0*}${r1<4t80!Rr)!CD2cZT6fM^E{^dBbw15HwLvo)fV)i+mkw4#&2XJw@mHM4hc z#Al)B`1@q(Xk4im!LtwzSq6K^kOwr3Q5ob0_7F9sK;CHrrcd3Kzs5O*Jjl*WDfKcd51u&9P>BR1 zEcAz5k0pUpmw^-(ZBml7ib)O=D=t&r5~QP!90h(-q8LVLNQL@j(oWpPpCe)lVl)Ih zh#@*L@E!MtHdb3Mxge`C(6J_Mt~R!}W5CdIJyvElC`m0CRb@51WfGG@Eq0PK!dYUu zk)AO5I2$xoIer}Tw?1yx#2OBC-?O%D<#;FKEHEa&b1#q@RQH1+xu0>2 zv4FN97Y#M_C5X!yzzileKo~tw;?d>N#N|{<2jfPLRI#$N(~pUWjY+{+PeZ_&rP{PT zoZ~Ga*O*MhfM#KemsH32H?J4dRJ8MJL|4~kJ+@NYZr%xO=9QDIK~Dc2E_Hsu4F*bh zS69!M@6q79z07kXsG$G3n=gv-8AgrIth>DzPlOeuf9{nVz983DL;c#$ouh(0!7lkU zZG(Zma%C@QnV<>L5)23Ra{h$=RNR98RKkWnP3(a_>}{eQRAYOpG`Ol!k_npF$Xdp| zLsHiEbIrtn5_aMKBi1DVH^bcO-qjHW4;P!V6Wb5T1lYpH#>ZIcJL9G5*S04;C0PLD zhm8;WOnE(DD~5D66Xd1QL%GgW!&*=IhdC$K)5yam-{z$@?Y0No(v_>8mX)S#Uur)f z6Z>z;ms1GJxrXaJD?GMcFaw&Z^(D)T-`+-fq6IcurWD>@DOyI|=R3&{*knox9&~oj zj)@R*7W!YmF;mDQyMAutO59_SO6+N&*PxASw$WXS(3MZ-1 z1FzFZ(3;HTd8GOe`bnGGY~+P2sq7i3e)1=5$`XIV6&QKs8RV(_=F2tw>Q$0gZVD#_ z=el4sna{0{9e38ZaEScQ~N%w>|*k|+~jO@V78SmjTQclcxgxU|EOKO%mv#Zw^4E4!kGdX5b3p0R8i49pZ13jWH1F|hSYj|8pbC`nCUn3D{W4r}t zhow46Tw*=5PeO_!iH#FavY9`RglYFrS{!S5v%Bf9(PGMoT28z;$!i;KZ|~ihF{HPe zg|bjaW@-!V>~e>jU?6i_A+7Ku3l>04kF7I;c~aJaIV*K^YP$+(eFYGp`#t30>4CL&o^`!gS_BajU$>8;+hqYJ;9qVS9y?zL z2X99=d^uShE{Hm!osvl55`lz?DV=SfrCb?DUeA?9T^|zd2giifjEEy0^w$MKrZgi`qF*0V zI^6^p{v4GSXNSDycA@8yCIZPLfdCj2!FTJ+$G7n##x?qtk1ZB|0(u_3j#{tV&8{5E z4pt<4qcGT(75lRHc)!#)*YA9f5odyjKf{OU)*QvHMKqI+a=3=BT26@l zF#e(_75I7n%*A2toWvDNZ^d!VEbxqvP-&;N5bq^1rm$(XBX$7h?;y!X140yeJ!F8_ zj1Q{x)oBatpbU|eq>z-3@}Wqzz#75GkUkyhX$>zAv&^oX(nTK#s4HddPB_;+&FyRR z4V1E^t60Lk&Qo7x>wa)?!Nj#Sj#MMZ?v;uOs%R1_fb*3pZT^RiQI_^i(}I8xAmMzC zaDMp&;qY|agIX`tmV5$ZPR;N2pM9G5NVuRV{$%=E zt0gfzfd104uzzbW4*yYH>6Kw^c&6M$xR!9|79^(X9Y4Ps-gyteaURTg&>^c;`zqu4 zwcSCup0gj>9Qx*>k#p=9h;|ba9A@d4ZqYN>GrX^V(#NJjLkXzX%w(GmLw{BUd1&#_ zt`ICNk4FGnAWu4HTHBM*G9WqLdK9 zY^;zHEnZxA@+SXo!I(c}^C;yA{t(@}Eu0G5cCB?}>;{am$0>AQJP%jDS9LSc!&uG$ zxebwt$kR#GiK5()^ngHjp18UXkX81edqb!=GYlw>-AA%74lFHc$yuG>TenKIeAQ*H zPlPw?;@p~%k9-!OpbdiCO6tmcWo)AgjeCGhT80~*={M<79=r`tl5V6_z;SIlz)R5N zY-e|S1_{-5YURs_6CXWLSunXf=sO7kjzh7FeYmYW|9tAZ0N-UkD)Nplhe7zt2(UHBun62KjXR~m{*ymQPh2=b1 z>Lq(FU+Gj7#xI$Ejl~p#C(lp%(HfrAYa3o!0OU{{`Z_M$D9J*%sSen&uFn7i{Vk?1 z>WPx|Hg_RosXcYo!aY^>7Bzo}QpdvCg<$p(*^FKI^;vBNG4poc)WDsqCvL?iDzD_# z)_|j4Slmbk7dd4Nxb@=@j_Qc!=adrh{t(dJc38|-WSk#eOW15O_)TSTjqUw^dF^Nn z3=NB*vo-N})L*xKzc+)4@{Wjzf&DNAZxorsjDY=szQ?^ZJl4h*i)LEeVy$sjp*VVI zs7(l(PT$3#?+(S#F`-!d|0e=bK4Hfhn!C`uQU0`D-@7q^|D^>sf3pIM!B$EVaZ~EJ zt>m|#u2oe@%HR#@-KZ+bOP*}>C;$pHM_6r)Ddg%t@@-<5mHE4E*fW!rnqke0jyh7> zG3t&f7~C{G$;}#cFF<14n69NMsc`WK2q<-W+;5a|22Re4ZyfP6u>lu~$D!8EPC{~Gr5fqX2 i8DQ3mvis+<(J{eMG2AEyQxk`=!C^HK2xm_h%|8LJ;5R1# literal 0 HcmV?d00001 diff --git a/os_exercises/ch4_exercises_solutions.rmd b/os_exercises/ch4_exercises_solutions.rmd new file mode 100644 index 0000000..eca3d99 --- /dev/null +++ b/os_exercises/ch4_exercises_solutions.rmd @@ -0,0 +1,116 @@ +--- +title: "Chapter 4 Textbook exercises" +subtitle: "Solutions to even-numbered questions \nStatistics and statistical programming \nNorthwestern University \nMTS + 525" +author: "Aaron Shaw" +date: "October 7, 2020" +output: + html_document: + toc: yes + toc_depth: 3 + toc_float: + collapsed: false + smooth_scroll: true + theme: readable + pdf_document: + toc: yes + toc_depth: '3' + latex_engine: xelatex +header-includes: + - \newcommand{\lt}{<} + - \newcommand{\gt}{>} +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) + +``` + + + +All exercises taken from the *OpenIntro Statistics* textbook, $4^{th}$ edition, Chapter 4. + +### 4.4 Triathlons + +(a) Let $M$ denote the finishing times of *Men, Ages 30 - 34* and $W$ denote the finishing times of *Women, Ages 25 - 29*. Then, + +$$M ∼ N (μ = 4313, σ = 583)$$ +$$W ∼ N (μ = 5261, σ = 807)$$ + + +(b) Recall that Z-scores are a standardization: for a given value of a random variable you subtract the mean of the corresponding distribution from the value and divide by the standard deviation. The formula notation is given in the *OpenIntro* textbook. + + Let's let R calculate it for us: + ```{r} + ## Mary + (5513 - 5261) / 807 + + ## Leo: + (4948 - 4313) / 583 + ``` + Since the Z score tells you how many standard deviation units above/below the mean each value is, we can see that Mary finished 0.31 standard deviations above the mean in her category while Leo finished 1.09 standard deviations above the mean in his. + +(c) Mary finished in a much faster time with respect to her reference group. Her time was fewer standard deviation units above the mean, implying that a larger proportion of the distribution had higher (slower) race times. + +(d) Note that the question is asking about the area under the distribution to the right (greater than) of Leo's race time. Using the Z-score table (Appendix C.1) in the book, we can see that Leo finished *faster* than approximately $1-0.86 = .14$ or $14\%$ of his reference group. This corresponds the probability $P(Z \gt 1.09)$ for a normal distribution. You could also use R to calculate this (note that the *OpenIntro* reading introduced the `pnorm()` function on p.136): + ```{r} + 1-pnorm(1.09) + ``` + +(e) Again, this is about calculating the area under the distribution ot the right (greater than) Mary's race time. Mary finished *faster* than approximately $1-0.62 = .38$ or $38\%$ of her category. This corresponds to the probability $P(Z \gt 0.31)$ for a normal distribution. Again, here's how you could find that using R: + ```{r} + 1-pnorm(0.31) + ``` +(f) The answer for part b would not change as standardized values (Z-scores) can be computed for any distribution. However, the interpretation and percentile calculations (parts c-e) *would* be different because they all presume a normal distribution. + + +### 4.6 More triathlons + +(a) The fastest $5\%$ are the $5^{th}$ percentile of the distribution. Using the Appendix C.1 table again, the Z score corresponding to the $5^{th}$ percentile of the normal distribution is approximately -1.65. You can find this value more precisely in R using the `qnorm()` function (more on this in the [Week 5 R tutorial](https://communitydata.science/~ads/teaching/2020/stats/r_tutorials/w05-R_tutorial.html)): + ```{r} + qnorm(.05) + ``` + Once you have that, you can plug it into the Z score formula and calculate the cutoff time ($x$): +$$Z = −1.64 = \frac{x − 4313}{583} → x = −1.64 × 583 + 4313 = 3357~seconds$$ + Note that the solution there is in seconds. If you divide that by 60 it looks like the fastest $5\%$ of males in this age group finished in a little bit less than 56 minutes *or less*. + +(b) The slowest $10\%$ are in the $90^{th}$ percentile of the distribution. The Z score corresponding to the $90^{th}$ percentile of the normal distribution is approximately 1.28. Again, here's that calculation in R: + ```{r} + qnorm(.9) + ``` + Then put it all together again to calculate the cutoff: + $$Z = 1.28 = \frac{x-5261}{807} → x = 1.28 \times 807 + 5261 = 6294 ~seconds$$ + Divide that by 60 and it looks like the slowest $10\%$ of females in this age group finished in about 1 hour 45 minutes *or more*. + +### 4.22 Arachnophobia + + +This question focuses on applying the knowledge from section 4.3 of the textbook on binomial distributions. Our old friend the binomial coefficient comes in quite handy... + + +(a) Recall from the birthday problems that a binomial probability of "at least one" successful trial can also be thought of as "one minus the probability of none." With this in hand, you can start to plug values into the formula for the probability of observing $k$ successess out of $n$ independent binomial trials given on p. 150. +$$P(at~least~1~arachnophobe)=1-P(none)$$ +$$1-P(none)=1-{10 \choose 0}0.07^{0}(1-0.07)^{10-0}$$ + Let's let R handle the arithmetic: + ```{r} + 1-(choose(10,0)*1*(.93^10)) + ``` + +(b) This one just requires you to plug a different value for $n$ into the same formula: +$$P(2~arachnophobes)={10 \choose 2}0.07^2(1-0.07)^{(10-2)}$$ + ```{r} + choose(10,2)*0.07^2*0.93^8 + ``` +(c) You can think of the probability of "at most one" success in a binomial trial as equal to the sum of the probability of two potential outcomes: zero or one. + $$P(\leq1~arachnophobes)=P(none)+P(one)$$ + Off to the races with our same formula again: + $${10 \choose 0}0.07^00.93^{10}+{10 \choose 1}0.07^1 0.93^9$$ + And R can solve that quickly: + ```{r} + (choose(10,0)*1*(.93^10))+(choose(10,1)*0.07*(0.93^9)) + ``` + +(d) The question asks us to calculate whether random assignment to tents is likely to ensure $\leq1~arachnophobe$ per tent. We can think about this as a slight twist on the result we calculated for part c above. Specifically, the answer to part c is the complementary probability of the outcome we're looking to avoid in this case (more than 1 arachnophobe per tent). In more formal notation: +$$P(\gt1~arachnophobe) = 1-P(\leq1~arachnophobe)$$ +$$P(\gt1~arachnophobe) = 1-0.84 = 0.16 = 16\%$$ + That covers the *probability* of multiple arachnophobes per tent, but as to whether or not it seems "reasonable" to randomly assign the teenagers to tents given this probability, the $16\%$ result cannot answer that part of the question. Making a decision based on a probability is an entirely separate issue! On the one hand, the probability of a bad outcome is not *huge*, but the decision should really depend on how heavily the counselor weighs the negative potential outcome given a $16\%$ chance of having multiple arachnophobic campers in one of the tents. The question makes it sound like the counselor "wants to make sure" there's not a critical mass of arachnophobes in any one tent, so a $16\%$ probability of failure implies that they should *not* use random assignment. Indeed, if the camp counselor has taken a statistics course, they might consider *any* probability of failure greater than $5\%$ as unacceptably high, but this assumes a pretty sophisticated and risk-averse camp counselor (who, let's be honest, is probably a teenager themselves with an under-developed prefrontal cortex and therefore *highly unikely* to base their decision on a mathematical and risk-averse assessment of the underlying probabilities). Personally, I can't even pretend to understand teenage decision-making and the idea that the counselor's actions would have any relationship to discrete calculations of probabilities is laughable. Who assigns these questions anyway? -- 2.39.5