From b5b6d3406dd061c2f83e5082812718b686da0d5a Mon Sep 17 00:00:00 2001 From: aaronshaw Date: Wed, 21 Oct 2020 15:09:52 -0500 Subject: [PATCH 1/1] ch6 exercises initial commit --- os_exercises/ch6_exercises_solutions.html | 1757 +++++++++++++++++++++ os_exercises/ch6_exercises_solutions.pdf | Bin 0 -> 65039 bytes os_exercises/ch6_exercises_solutions.rmd | 196 +++ 3 files changed, 1953 insertions(+) create mode 100644 os_exercises/ch6_exercises_solutions.html create mode 100644 os_exercises/ch6_exercises_solutions.pdf create mode 100644 os_exercises/ch6_exercises_solutions.rmd diff --git a/os_exercises/ch6_exercises_solutions.html b/os_exercises/ch6_exercises_solutions.html new file mode 100644 index 0000000..3659e12 --- /dev/null +++ b/os_exercises/ch6_exercises_solutions.html @@ -0,0 +1,1757 @@ + + + + + + + + + + + + + + + +Chapter 6 Textbook exercises + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+
+ +
+ + + + + + + +

All exercises taken from the OpenIntro Statistics textbook, \(4^{th}\) edition, Chapter 6.

+
+

6.10 Marijuana legalization, Part I

+
    +
  1. It is a sample statistic (the sample mean), because it comes from a sample. The population parameter (the population mean) is unknown in this case, but can be estimated from the sample statistic.

  2. +
  3. As given in the textbook, confidence intervals for proportions are equal to:

  4. +
+

\[\hat{p} \pm z^* \sqrt{ \frac{\hat{p}\times(1-\hat{p})}{n}}\]

+

Where we calculate \(z^*\) from the Z distribution table. For a 95% confidence interval, \(z^* = 1.96\), so we can plug in the values \(\hat{p}\) and \(n\) given in the problem and calculate the interval like this:

+
lower = .61 - 1.96 * sqrt(.61 * .39 / 1578)
+upper = .61 + 1.96 * sqrt(.61 * .39 / 1578)
+
+ci = c(lower, upper)
+print(ci)
+
## [1] 0.5859342 0.6340658
+

This means that we are 95% confident that the true proportion of Americans who support legalizing marijuana is between ~58.6% and ~63.4%.

+
    +
  1. We should believe that the distribution of the sample proportion would be approximately normal because we have a large enough sample (collected randomly) in which enough responses are drawn from each potential outcome to assume (1) that the observations are independent and (2) that the distribution of the sample proportion is approximately normal.

  2. +
  3. Yes, the statement is justified, since our confidence interval is entirely above 50%.

  4. +
+
+
+

6.16 Marijuana legalization, Part II

+

We can use the point estimate of the poll to estimate how large a sample we would need to have a confidence interval of a given width.

+

In this case, we want the margin or error to be \(2\%\). Using the same formula from above, this translates to: \[1.96 \times \sqrt{\frac{.61 \times .39}{n}} ≤.02\]

+

Rearrange to solve for \(n\):

+

\[\begin{array}{c c c} +\sqrt{\frac{.61 \times .39}{n}} & ≤& \frac{.02}{1.96}\\ \\ +\frac{.61 \times .39}{n} & ≤& \left(\frac{.02}{1.96}\right)^2\\ \\ +\frac{(.61 \times .39)}{\left(\frac{.02}{1.96}\right)^2} & ≤& n +\end{array}\]

+

Let R solve this:

+
(.61 * .39)/(.02/1.96)^2
+
## [1] 2284.792
+

So, we need a sample of at least 2,285 people (since we can’t survey fractions of a person).

+
+
+

6.22 Sleepless on the west coast

+

Before we march ahead and plug numbers into formulas, it’s probably good to review that the conditions for calculating a valid confidence interval for a difference of proportions are met. Those conditions (and the corresponding situation here) are:

+
    +
  1. Indepdendence: Both samples are random and less than \(10\%\) of the total population in the case of each state. The observations within each state are therefore likely independent. In addition, the two samples are independent of each other (the individuals sampled in Oregon do not (likely) have any dependence on the individuals sampled in California).

  2. +
  3. Success-failure: The number of “successes” in each state is greater than 10 (you can multiply the respective sample sizes by the proportions in the “success” and “failure” outcomes to calculate this directly).

  4. +
+

With that settled, we can move on to the calculation. The first equation here is the formula for a confidence interval for a difference of proportions. Note that the subscripts \(CA\) and \(OR\) indicate parameters for the observed proportions (\(\hat{p}\)) reporting sleep deprivation from each of the two states.

+

\[\begin{array}{l} +\hat{p}_{CA}-\hat{p}_{OR} ~\pm~ z^*\sqrt{\frac{\hat{p}_{CA}(1-\hat{p}_{CA})}{n_{CA}} + \frac{\hat{p}_{OR}(1-\hat{p}_{OR})}{n_{OR}}} +\end{array}\] Plug values in and recall that \(z^*=1.96\) for a \(95\%\) confidence interval: \[\begin{array}{l} +0.8-0.088 ~\pm~ 1.96\sqrt{\frac{0.08 \times 0.92}{11545} + \frac{0.088 \times 0.912}{4691}} +\end{array}\]

+

Let’s let R take it from there:

+
var.ca <- (0.08*0.92 ) / 11545
+var.or <- (0.088*0.912) / 4691
+se.diff <- 1.96 * sqrt(var.or + var.ca)
+upper <- 0.08-0.088 + se.diff
+lower <- 0.08-0.088 - se.diff
+print(c(lower, upper))
+
## [1] -0.017498128  0.001498128
+

The data suggests that the 95% confidence interval for the difference between the proportion of California residents and Oregon residents reporting sleep deprivation is between \(-1.75\%\) and \(0.1\%\). In other words, we can be 95% confident that the true difference between the two proportions falls within that range.

+
+
+

6.30 Apples, doctors, and informal experiments on children

+

tl;dr answer: No. Constructing the test implied by the question is not possible without violating the assumptions that define the estimation procedure, and thereby invalidating the estimate.

+

longer answer: The question the teacher wants to answer is whether there has been a meaningful change in a proportion across two data collection points (the students pre- and post-class). While the tools we have learned could allow you to answer that question for two independent groups, the responses are not independent in this case because they come from the same students. You could go ahead and calculate a statistical test for difference in pooled proportions (after all, it’s just plugging values into an equation!) and explain how the data violates a core assumption of the test. However, since the dependence between observations violates that core assumption, the baseline expectations necessary to construct the null distribution against which the observed test statistic can be evaluated are not met. The results of the hypothesis test under these conditions may or may not mean what you might expect (the test has nothing to say about that).

+
+
+

6.40 Website experiment

+
    +
  1. The question gives us the total sample size and the proportions cross-tabulated for treatment condition (position) and outcome (download or not). I’ll use R to work out the answers here.
  2. +
+
props <- data.frame(
+  "position" = c("pos1", "pos2", "pos3"),
+  "download" = c(.138, .146, .121),
+  "no_download" = c(.183, .185, .227)
+)
+props
+
##   position download no_download
+## 1     pos1    0.138       0.183
+## 2     pos2    0.146       0.185
+## 3     pos3    0.121       0.227
+

Now multiply those values by the sample size to get the counts:

+
counts <- data.frame(
+  "position" = props$position,
+  "download" = round(props$download*701, 0),
+  "no_download" =  round(props$no_download*701, 0)
+)
+
+counts
+
##   position download no_download
+## 1     pos1       97         128
+## 2     pos2      102         130
+## 3     pos3       85         159
+
    +
  1. This set up is leading towards a \(\chi^2\) test for goodness of fit to evaluate balance in a one-way table (revisit the section of the chapter dealing with this test for more details). We can construct and conduct the test using the textbook’s (slightly cumbersome, but delightfully thorough and transparent) “prepare-check-calculate-conclude” algorithm for hypothesis testing. Let’s walk through that:
  2. +
+

Prepare: The first thing to consider is the actual values the question is actually asking us to compare: the total number of study participants in each condition. We can do that using the table from part (a) above:

+
counts$total <- counts$download + counts$no_download
+counts$total
+
## [1] 225 232 244
+

So the idea here is to figure out whether these counts are less balanced than might be expected. (And this is maybe a good time to point out that you might eyeball these values and notice that they’re all pretty close together.)

+

Here are the hypotheses stated more formally:
+\(H_0\): The chance of a site visitor being in any of the three groups is equal.
+\(H_A\): The chance of a site visitor being in one group or another is not equal.

+

Check: Now we can check the assumptions for the test. If \(H_0\) were true, we might expect \(1/3\) of the 701 visitors (233.67 visitors) to be in each group. This expected (and observed) count is greater than 5 for all three groups, satisfying the sample size /distribution condition. Because the visitors were assigned into the groups randomly and only appear in their respective group once, the indepdendence condition is also satisfied. That’s both of the conditions for this test, so we can go ahead and conduct it.

+

Calculate: For a \(\chi^2\) test, we need to calculate a test statistic as well as the number of degrees of freedom. Here we go, in that order.

+

First up, let’s set up the test statistic given some number of cells (\(k\)) in the one-way table: \[\begin{array}{l} +~\chi^2 = \sum\limits_{n=1}^{k} \frac{(Observed_k-Expected_k)^2}{Expected_k}\\\\ +\phantom{~\chi^2} = \frac{(225-233.67)^2}{233.67} + \frac{(232-233.67)^2}{233.67} + \frac{(244-233.67)^2}{233.67}\\\\ +\phantom{~\chi^2} = 0.79\\ +\end{array}\] Now the degrees of freedom: \[df = k-1 = 2\] You can look up the results in the tables at the end of the book or calculate it in R using the pchisq() function. Note that the pchisq() function returns “lower tail” area values from the \(\chi^2\) distribution. However, for these tests, we usually want the corresponding “upper tail” area, which can be found by subtracting the results of a call to pchisq() from 1.

+
1-pchisq(.79, df=2)
+
## [1] 0.67368
+

Conclude: Because this p-value is larger than 0.05, we cannot reject \(H_0\). That is, we do not find evidence that randomization of site visitors to the groups is imbalanced.

+
    +
  1. I said you did not need to do this one, but I’ll walk through the setup and solution anyway because it’s useful to have an example. We’re doing a \(\chi^2\) test again, but this time for independence in a two-way table. Because the underlying setup is pretty similar, my solution here is a bit more concise.
  2. +
+

Prepare: Create the null and alternative hypotheses (in words here, but we could do this in notation too).
+\(H_0\): No difference in download rate across the experiment groups.
+\(H_A\): Some difference in download rate across the groups.

+

Check: Each visitor was randomly assigned to a group and only counted once in the table, so the observations are independent. The expected counts can also be computed by following the procedure described on p.241 of the textbook to get the expected counts under \(H_0\). Those expected counts in this case are (reading down the first column then down the second): 91.2, 94.0, 98.9, 133.8, 138.0, 145.2. All of these expected counts are at least 5 (which, let’s be honest, you might have been able to infer/guess just by looking at the observed counts). Therefore we can use the \(\chi^2\) test.

+

Calculate: the test statistic and corresponding degrees of freedom. For the test statistic

+

\[\begin{array}{l} +~\chi^2 = \sum\limits_{n=1}^{k} \frac{(Observed_k-Expected_k)^2}{Expected_k}\\\\ +\phantom{~\chi^2} = \frac{(97-91.2)^2}{91.2} +~ ... ~+\frac{(159-145.2)^2}{145.2}\\\\ +\phantom{~\chi^2} = 5.04\\\\ +df = 3-1 = 2 +\end{array}\]

+

Once again, I’ll let R calculate the p-value:

+
1-pchisq(5.04, 2)
+
## [1] 0.08045961
+

Conclude: The p-value is (just a little bit!) greater than 0.05, so assuming a typical hypothesis testing framework, we would be unable to reject \(H_0\) that there is no difference in the download rates. In other words, we do not find compelling evidence that the position of the link led to any difference in download rates. That said, given that the p-value is quite close to the conventional threshold, you might also note that it’s possible that there’s a small effect that our study design was insufficiently sensitive to detect.

+
+ + + +
+
+ +
+ + + + + + + + + + + + + + + + diff --git a/os_exercises/ch6_exercises_solutions.pdf b/os_exercises/ch6_exercises_solutions.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9cc8c3bbcee5355d0125a9d1c3fb43deccb7543e GIT binary patch literal 65039 zcma&MQuvsk5i?rry^|}6 zNzgMhu)~la-Ce)IurLuZ5jhxJ!|?GjN?6&tnmIE{*c!Q-iJ6%=n3^%lnb}*oS`x8v zu&@dUz__?Nn;F@`cy7+%OgWQwT<6xE5n6_U<>?(S601*W9JfX~RN&FsG^bw~oh0oc z3L*KrsSMX`gI`tp9`ng@*&1aALWK2KtIRhz5gzKK{d zfqM*|!qzEdJgk$O0PHA2cagX`mXfLG%Rc1lrI7sd0^5moZ>Hxmae>L4&v9#mCiAej zF(4?&kXWmfBcS`LH+3(@DLqk|r!Son3^Tw1k@-+2Iy#1XfAcI#WNJ(ZB6xgGPT`yw z@<`x(X4Q01c+e_M3O0KleE(+2A5I2E_3!nNiJ4PrDT^HpUaKWE2p<^HVu7kAs=@Fs zbYM2}qZAOeK3&S~(cP8*J4s*R$?i_oE`<^k>o*N8glYAnppM!U+GwYzwVl+_-o`94 zE8@wJ8u2jgfcy{+y#gO=7VIIU0su7EyMvnd5Gvz%t%jtmATVx zGrd^6R@tB2Wbm}PXFNFYT&^FB4l&LX=Ej;;%+fsS&p9;REt>hI&yPO0~kB}uc3ipkQbPF}}p$O=K zDk9*$Pm&TxOqfPBd=IW{>S4>IN>q!5n+m4fym10@mLvr&r0=aZdM%>Jf3rC^g9=3$ ze|dbVg4h8lDkz6Z5$?!)by7m>#Rgzw0=pyOUnfYwHz;BpBP$zli7!`1T$Vql(M}x| z6V22!YNp)0rpOaT6iO`Pp~4pE!7)vJd=g^0&S<`VtfR}a&@Ki2*wTOeY~AJ$F+e2c z)C0)vMMEKJ*=Gn=-I!L;K8ELY3VAuhY>o#LZbSXCJItz{uYDT2;{gtyHcA8DGA+Gx zExF?NME--=oW11Z>JBYt{!13 z`S+}Q0!S-t(LxK($_!4xD394v(cTg`#=(l@VjV==pxv`rgsP3c;YyLNX3R9)Q5=CP zUECNv*X;_C4{zy6V_SM-gfxlz-?40Ms5h1}9M!iY(_n1v!O!N?XzSbCf*Jr)yN>td zxT&InvQD=Pk-DT3UX>*{Qs;o6jGSvmv$PPwpo=CGB77TM1?XHJ!Wp%rufG;ujNKmh zu~9yS;B!5!0J$lH2-EQczw;s85B~&zD5sQOVb1zLWQGYe^2hY*IZlPV+q&4A&=XEe zR;o#|yBzho_PF?uZ9K^-D_gyMj@Kdmxeg;<3~ggtiq21d%RN^LR1hYkIH(?fy-~2^ z=yaa$*INnfYy_dpaP5U@ueSeihC%=l;i^Y^o*xmMZ?D|RQRxsiw zwC1F8n*33BLDhsaoge!BeKTWuyKaLd>N9R0HjG?7p|duIjgHQUHU@y)>;&ud`f1n3 z*YK~hH>fh%U(Fw-wz^>^Yl$LnHUysrBdtBgHmK4*(U<&LyN2w29t(L3uOJ7Vcx
GNPLtXH1C08+k35psZ^ju|K77P?!Cha%!LYyWSzuFi4 zGZoA4(+1~Dm_C^xZp5&r1;l#B#6mf8CQqLA(hODsTAHMk@DDQ z@QA2gF(L_6FOQH+P#KgkG7*yV;|qx!>h4r>yoc0}O9&z2RO^ny>FRvZVx@Qo-Smi5fj<1AgM`7dO4J*T4$|pnbX)C zLyy$_rMY>xqbKF3Elk@b|D$3=*5<*B8ep}mm{>}}lg;YpRm1z23W$N|8gp36&sdLF zRuT!fW(k;p6|QJy)=lRp5P6%qP!Yn_yN|CDYB<0^2=VH6y-X?ppnLiz@e zdk{0VAQ8P96_1UxE!*2erz{4US2zWy-cME(JMMt+r9^AB8u!TeRa5KD56I|J>I&%D zi`Y2jK@%Bgz7;fW(Jt;;vJ%ZG(j&t!XW8wg*P1Wm2l7~k=bA-XDX_agm~nUPjrJ86 z(HZ%M%yhva9n7()4{7ftTcnX5039;hr5+S_jN`?itSZtAO8rzDH*{h88QYDMsjz~+ zL-cEFExy*XsU8n~6Y>`CAhORBPCX`*y)8tj&n}fAUoPbKyk-{MEQO5t}zDAjNSr8T3 zFSou?Zry?jhf`rdD^{r(>$=H$hfi5+`ZRw}yZasUYg+lcGtv}^Upp=dSWS4(QUfS; zH95nEOMVo?TWx7m4aG!STBN}}yv*c8m4jt{V$gU<;4&GgbOdxX(kBdd#>~pV`iuUh ztJ;b1c04;yN|OEm#b6?dpRS#UFQ8jE}^UK!I;^b{(mI-pV$AeCkxwu z1EH)O?417_LPzi>oN3$cbL%n)i9pz1Xi^a>WOP%rl09UPiJ}S_Uj}-QUYFqW8{or8 z$a_v3%@Q+&i(cXB9r_%sli%Vu`S$yqeZJxQzC#52miPJ`0zO;6p9#IANq8K$+GrW_ z&Z2jF^?n}7N|fJRyacRj?z5s*E@*3k{2}y1n^G=PHSVZ?g#7k~Sl=iCCFo}wXMQ2D z#KOmAa0Z&|VMemL{HMvd0vZdbKN1#8K2NLy#O)gDzR!=;_%UN&uUmqNz^x`g<3z>c z0;UjD@<>xY{6#4kNEbF7e0edd9c$%9uPBtW-<2;hg8UO-&QKFz-dSGa z4$LK`xx(`_ep1exSH~^|>7k(EgT?9~S>S3?(Be=HOxO~mB+F~yl!_80(bMihRMk<_ zN?=6yTF*g(1kB)KCnMeDKyT&|_0$L16SsYnF5VBX4qJ2Obs}SiZNGLvDq8d(@AU`p&d0NIbVsDuDqjTBZY4oyI+($AG}6cp%IUZ;+Y#UZz|t^Sg!iutJ`aUO-ivOIr)FWv z-`Ogm(P`{U1aSy)c0>fXbCCqTXSl!iCDt!hRh*69pYU98Ch||%XvR#{Etq4X$;=U% zvoqG|9IzE46fU=>ZH{Zph?O`>$;tGKViuUNypFooz)CqHwUrd+W}p9uZr>N3*4a^J zHu93l5UN#}Ox`K7i&~?jWD?>wfk;i24~txe6e6)Do);)5SPEYhlwnFONbT#wS!5%C9XI==1tV|~M<^=ix(n~WOdabhzCmILOT zusH`TTky9bq(n)}bc|F;5~u)DOT`m}EVT6QFOq`+?i&*XytuL}7@{*c0F@3blz;>D z7LzBAPYC}+1VP=y9J4ZJNNm3QdO-`Qfrt%!9XjHY{X)1k|Fzj0av`^6AqF!8Oz4jN65wIdW-*S7oj$!kVRWmi8i=^y$9s!G< zTcPd`(aW_MSHc5lHlHhG@4DZ0aRI?blzyhB)`Ap~x1(EI2J)RfRCv(ub#8N!i7XqW z0={O~X8*)3Zna$+GY|2YP{^J!V{&(EB5Qcv@6t_QXdXtnoB6Wi^qjZbyp1>c`SBtF z5Js?mU%n>u_fqAO?&AG3TdueXm7%EYY%r)XP~(tV>=K+sj(N2#5wxhXpy@B8=&DIT zc?@48KSFy`;WXrALs_FjTh(ec+p(3j$>g7)>4)D*uWMIE+2$ii9!!!prnJBRQynv3 zG@e5|zl}=so@ui9#GN;lQ}|VY%=0f5TW&H(Q9kdFQNvl)iUyQA@ght#e^c{6L0pgu z5N;y6KeiJ(pAtjT!51~mXwjW9Ih6&#=^tDZX^WK2%2P>Y{9$?;q0?t?L6y0FV%{zo zWYK^3yI}J62&}M}joshUADpAoGL7_TmfwSvmiir#Sl-E>$;3eInZg+2_R!!xu&8%Y? zd|rSmSXHxLMv_L0o*cPYgXy^ivDuh1_XpqW<1%;E@d!9}3zvggqAK=42yCcaBZ?B2 z^VJ6xU~CkeRZzxO`L$cY*ROG_J~nq2xwwtAK< z;jHGW6+{2Fw=LO73NJL2HUc;04EIdicHI=6Bcbvq5EK5G!r$i>58Io=?jX|w5J%Bb3k!&B7;)DuL3Di85MIS}ICP`!j=^3^sMdeL;m?as^a&#Gbi!1pFD67xBLzyeIw4vQ zB8J2o)-Z=b5ub1LUjCQ$hn0&JViqcymz`r<6Lr3-my>I=ytWfPr5MDK0GTmwW##V2 z8f=vi+t$1Bp$$H$syz9;9vdFB5B-puffc{lJ+UBx``uVVT7J>To~oF(sT5GgqrBwn zvCDfLQ$~_FVKloz@>s&y^QqsW>{ukakXz~({2EH9!QrmEG2&4om{e{tKhrmWK-XPI zr!Ae5t6JOXVFwH?u>q^@`~LO!EzgJJ33Duz`gYj@-(*ZWgfzgabKKxqOV8yQi?TC7 z)!o|AYo(0pY@t{my>^k$O#)+!xYKhHZ6-Cl3r}&4I%qqRVJQ2s+8glbeU9{8yI}UpBtg*WfwO(c+IiJZOz2w zv(Qu{mFxzQ01d^e?HBH{*kz54mGg$xbLAbKGRd>cr?)>m{LxHnrY9}3ErG}z753Zm zO5$gL_3fYtRnbMlp=~1p7L}+b%*og>pg}1xnf-g zWlKFy2I;{=*m+d(<@RNeAIPCom4}T^5eH9Pg0`zlSem0ebX|?~G{8-lbvIW}XEhSX zo&J6VZ>Klr-`1%({1t%K9OpTLWWM`v8kUgpm;tuW&&%sGrSJr0an@G#Ok6Ye+0bNp z3i9q}&DNbrh?mGqPLZR{(~?nfhko5GG)OV-oUnurN=#@wNIWmvOfVOLxK9J^;YyGM zhXUKTrNgZ80(>faME$)&;M$f$R;jd5XW&uEVFd=%V9AUy>;xMbf-<2G^?FIhEfl8^{vMe0nH|X85K17(oe64Dw?SLd%mh;t>1>dL;#3+Tn{W-IlLBoIP z(bol!t0YC2ZkIlZR!8Y^uTpdn1`KCZ_Gr50t-NBmpO zD6J(dqTc-;jj&Tf4i*LELSWnY&jt5^3=Dg2d&|-LIiICPUROk+&CKXhfcrBc>oinO z5<~%;+)4Ynvr3K=4;3h@0n?EgL#6bYuw0VuIHXM|Nf`$#q-C?R62m|MsW;JR0ZrZ?SW+vm`B^pFl&jME6!oEl?hDiyLAtZ&!0Cij0WjiaFm0 z=jH^?f6A+sJC;TsiTp8sbm0i^3ZvJfN@4hyYA$Y>cZU$DIl?`fN|31hqtd^}!I5W1 z^PLxPnYQGK@K?o`vHzj3Z>s$r(m>AACke3X?|Cu2xl{S&6l{u*nrBS8(f0&@ikb(&=NS{Z}j~^`}!j-jiY*=Smh)0=1R54orqAr8atBK5N^LDsdby&c+c9Yj6?Z0U((0Yov)Srhz<(X-`Sfw zM(2pM5*dO@*EJDchtexnIE<`k`l%kvFf6rQWUFQuXMt^6EjOq47_M9<}dT z;dB>{d@Fs+TvpGeTCP=hIP@>|oXZmZ-vk~YD_ieHj8EL0sVHgVvsrg&12DsD$Vy{f z2bgnzpGm5$xw2h``b-n=Tkn5LsH(yRHBHqt0k5Z#wp@GTw-k*B*&bpV>p#S0k_VEf zg7S3M>pMWjHZh;R1i#vgVAK9M!qvuZ>%d{3EQmigCD>J|0;jx2u;%CalPk@iN_Ou* zzqP>Sn&JU>SKXMzA-DmN503^vh{`DQH!9T_uLHQaWJ=E=g%o!i65gu9iu|m zm$W2x&a5D6vlg|PR0sP@-h0JdEXA*V-%(y^o8IJY9it47*NLd%`fS3l|A(ge0uqKn zh|~E~VUU!Bhkzf2IZK^HUoRFRY~6eEM|NKELsN6fIX%j4<8 ze6152wV|#2)?A&_ocUB+J#Q0|Gfi8YA(_|u?8yy@-ufe3%GEcU9autngnoy2QxNAn z2wGdeu@9WS68c-f##ir_4B4qs+wpqGqKlN*c+*X(E73$JW=RR3hx0rW=3vDWqHdg! z?Rv#w=ChIPP9&`zzv&O_mdA8ngE;oSNp?^#B9Q3XmQ1}hZohD`q6nvm;h=RVFfU57 zC^+y@(`HJ|_w~{_qNC4GaW&KG<;`m$`T%4g)*4?*04)KHD#8i^qg~`NY&Dj8#S2xJ z(n!I_Dkg?9P&MsP$^I-D0~L;b1Y>#6WbuIenbK*)mfIV6+nf}P#y~E#JDWaZ4dNub z`(XkcRrxduB6`ZxUWiKA#GnLl4l{ z=d>meTk&8_q&FpKB~-9Qas_E^idI5M==jc5Z8;6gOV2^SR`?~d?w{$GYd^cTz!-4y zYc~l#1mPyO0XYu+#utM6<&tv7`cyp*y<>I+qg8HZ;SW@BODL&B9)hV@OJnj|{_36< zB@kPkCAtIVuzRN~kg%Q+;nKT$Hwq(H!&NICPdQP?OGHcm%aJrbfa@WxiJHsIa*d8` zw!6m!k4kgX4ct7eTA8|gI3k)ho%$yx>!9{&KghXDXkbJ6*7~3?!^hez))&M+d^N(i zr9c6WX2^MkWqa3U>!y3u7R`rZg^_gyVcZ$HmK3w-E>Qq0eV-4Ei z*fuU#^VEK~yGyb^`)a?ct^@e18cj<$o=OpPsCJ=?b%&ESFo`WE=qYhj4RG8)g!YCG zVE&3ok@!^6YBG346PIX_6(Ob|t(NleY-gGTuVXb3pf+)9QIB#fVm}elwrRpEAOA`m zj<~l^n3{HsqFb!fGetcKTn|KJ0AmtAr%)4JU&P?0CrTy$zUEV=f9>R>W` z5UG5i0mp}cv5*>|9pQ%Ey6`UcVbYh!0rO6^^%kwVQiSfsqw)fiads4WvZ%{jSTh=kuwTn3T#j`i_ot^G>TFLpXaP-N<%N(u_8-{Clh1RA zr?5_w&tdKz8V}Axz!rzW`XF*b80qzMF^eWxMtySJ?TinQsRc>+B?nIOcM^UfYeE}L zR6Xd+kHC%!@bp=swymKJ|6fK8Sh*~`0%eY6rLq zpdrA(7$+lQ-+!a`1qW|iA}h^|rl317TSXZuF5S!MqC1T4^fkI`XdDBZ>|c<1gCpbO z^Cr!SHSHT|dEjy0-&pOH2N>7anSQItC1;@CUH{~E19xD#rBl0wERk3= zYOI&Q?C&KY^!@otqA&RvnRuNgNE?J3S9dX!yTBo;BIycNw#e@7E=|k#}$JMULqMOwZA3ZR}#ZW&4MaN+4$`U;o zlNYC~IL&v9+s9AWOl1Ibs%YFDdi{gX4)88kWzSparp`V{ecqa}>p1y4o2$5nyYd|; z;Esv1)BuvoNz||2G|xuu>%lNX%}9UW``U*|vckwLc0Ix2#d_^oRlG5}9^TP(b&*Sp zhGVs~o=uag%@5`>cH1OX?@I8FZDm!LF{GQRrE2JwMEMuh8tCWr2FLloOy2v0AMNb$ zqWfrWyy#bZ2t4$Z*$P?Weo79ps8*tIH4`a^{$uOT+|=qH+O}p?9Kv;PG^J{NSIoW6 z%lXMWN)P;(L1TQk4^ub?B_rFZjAZpk7Nz?}G6nzib`4x?F~wcn-uCT{^)z-f&K zlIMET{XMx})iduN&JzC46oEyKK;iDB5)VP1KEcod+APXhZE{F+PVtfUC}SC(I;{7t zX~TD@K5}v&f_em4bPb>?dG8b8<>U|EeAbGLTQNcSyf$MfuUT~;)4maoufx|03zmE( z;zjBOK=FP%RFL(W%S)Gb-|rUW-?JxL`nYl*MKidic{xv8Ao;6u=nhmlqR&5=WpH`mdH`k;rU#g+Q zU_>xZ!XtJIz72YZ6CI{cDJnSRi)IIm8w>%B^i0oBEzjCi^i_LT>SB}bax&lb7=P=q z%LnfkIYG*ytKppROoY#PRHfpM}*7vmEv5t!^50v9gBLEHj_2NTu%$GNszl= z&Pb0L>aMl0>_*+wE3aZ$Y}2du@X5OJzWfD0syzlW9+d^?DCgI*Oy9dW#ow?CciWF0 zIiD8Sq%p=c{hRhp#&88Q&x2T6&9RsWIs_U?SOUI{fyn*^1TM4^eBFjHxwbalPwGD( zk*}q%1W&GpW$_AIF8Pk$)jQ-2{GSsmBYqaBAu9ECGUAarzRcb0rp2t~<_;Af;A)RI z7%S04#WXGB3l1(!75CG#rp;-vyejao`@3V(l5}bLw@cIrU%xtW zkZs;#cx=$if@1V6mL38pb1o;ZaF3w7U`@sB;@w*d*w3zx&9XtXax#vHm)`QJ@;Dfw zI%q`ozbB5sx)*u;7dk{3@CgglyW{hJs}?KEf1_G#EG#VlTeVj3{xd)OpXP5L5eWk4 zmL?6MVzQHllhWsZnm-(ae?vFqeR-ore;^=4l>xMoQ>)Gp!$k{c9-N*Z?kbd#zZJ=l zUk17Q{zGkf_qS^=@7GVKb!Bh~1q$>pdk_*_6`CBY3?eRfmX)EQ^bC+#6Wdyz-FAeU;=VT%+?f5l? z_)0?Ec4&GIx%U%-=HTQE+u_|Vq*T*ySpW{l+|N#JVInQqU}{4pbES3o{17~oa)rb- zjNm;bk~S6NuMBqexwbbbpBNEDtkB0sr1#FwBMS%TwlUH=FD;s;WEo>VR8uHtqYLJi zJN~1J7H&qT+iQC~i~HnxBZ>wjhn=hqIS(Y(|9Gq7_fUsbS%Qg|=|#QG z^EgQ9ESfcU>j>TdxFKTVi40(M4*d1FNL%li;nmx}=(L!07IE5^sCz@mQhM1|VB#nJmjzZxOx#1nA1YVUBDcu`KT5Xzrn0JYD? zVLm2ZlW|}tO}pFV=%RcQ<7$BT%3;(xsTW{jW3XVkky>l4)^M3_>|p7h{L^KFG*1&f zN{FddKhPRffOUE*2LTsYZ!>8R{tr6!v3zK66F%C*FK!MM0ELAec-ESn(JZmwwS4Nt zDdJqaaDGyK>bQ`+|cYAMoK0a=qz>$VtEw-_g!= zb=f|j%cXgOVV+EmgJgI(*t}`Q4;l`rdkAY#M?@-ieSwA$lnjHvI_wnmV+JJ+oX=^s zGEWkt|EHxQnmYQmexY@R#-oV44_!kIqpx^AF*&7!ypApjAWyjk;qws{fHW;g){t0; z#lA7eY@DNaXe?Zi6qzoUj!6z=;gnbnv)ahzRAuu==nh^R?3@tcW((^-<|ecFOK?+$ zCUQQq0fWc1eEYePsS|yzpeLo3V%6Ts+5gEd2!@a$h?;UWNRZ7}&n*%0$4t>kBh*Jk z5>iXd3TFZ-Pe}+AbG&&SrMB%H+e#fdLij(2Aj8;AKy(hd@g-fJ>o)K&=7gCbeUud1PK8Vh26 zP3d{mb&F%Gw#RHYtBc(yNT=z(Uj&^e`pYyIgjMmDvQZO(1jleQ271N#u01Kn8jGD= zu)E&fl?3LmXay1GY7T1tw=`@S&C1yfL%;N=a8uT^4xuIoco^v9KDLYkC}zA7Qsn)E z)NJ0U+3onSx?cozbbVmvL!)EKy?D$L7sHK?>qv-RpK{J{IBEff;}1<%ZOR0E62>8u z(;1-_NIhwCiC2}7P(@jBuKENEN0S9*W&9Z&S7+4a6-9*t7Kr#IQ6j0^KwM3UR5FCI zYMik!2DrsQf2QJvak^MmNGyM_X^MUu&R$mhl$8=)iR@*Iaxqx zr$Iqz*#v)@@@6rPa>3ReAgGcUTBe!7R;^^f!A{tfGI&wDUMG>MEF^qV<&2O1Ka>aCZb)DmC)X~;p^{s4Mv+4?&Eofr5P zE3ud#+y#qJPO3S!4|?LxB?n4J39wV|r9Op#ITPog*dY)UYWN)dD{L_!QQ{u4<_8nY zd5|%}!as>hj#5Vy8!zqX?Xsy{nJn!QqAJ#4K`Ht_#^d4Xc?NA?796p8>!<7;!je=R z=gfRTCb*%BH{q>P`ceiFCfG1<%dQb7WcI|OjYtVKEw{d%A?`+%V7|@chZ1c&ebo&i zK_-zU%?SSfENMW^KxPnhUPvt1dk)6X%|qZ{zbLZz+`oPtX(&6qGY!ScmfE24hSdM! zRNW>a8(bBPf+8Bf;Z(5dc-M$=&0A7M{3rYedMdBLt6h(^GXrgNX$}hK=P!s(lp4ZX z;$7z|b;>_|GTu6KH)@L*7-SV2X&sJ|}ZcfDl>< zJ0vSds^LY{cbol4H4+zQOf zEE`SYC0^TsTILt*RXGh=pmWBRK36qT#Igd-ymx!h zQ(XIve_z|?h5mKC0**uq61GXxCp9IAfEPhbxZPJ<)6NUDemjDCe1~W~U8of#=6n8v zjZ+_Ym_Gr9273;$x?U{o|LMcz>j$pL&%iyog~fBhkyf~Z@#_v_?WJ`wXsvdlI zT7Q+>>!L~LwKgj$@DU-Xb$N%U?cI|t3iMt&Cq$Cq$Z`p0+QbYLg>C!7v~H7Uxhu9C z*{WDv`x3f$@1#wO=2w;U{_$61v_dKxUEl_2p`Z6Q#Vr?7Wl?fCvp2}>gI++WrJ3Cn z9Orjyopis!y(gg%RO+$Q6glS3D~R230qFBJ8?uKp*QIe&hPEQBSJ3SxBRb=jA2}^AT$YnmZOYl;YsNDv{=mqUZbSX5R~u3^mahN#l$o_Mwfd0x^FJL=jKN^!s_eWC}^bPX`bg!CwK?am6& z>#t1xYgaRL9b1UsQD(c+84{L?y_eSLgC*mzQBWxxkKiZKu8U$wotmUFu5Pu1cSM`+ zxyK=Z@G#QmB+4y=i~;VUD&RdU7H|CZ!wzo<6P}{prWH2*=EihkHk(Qvu}_uw zGl$;e7Gb4w`>%1;Qx~hKQFE`R_g8>ZqC`!l^$!!|1BSWat9x|Z2As-gl0VhQ(=2}B zW^iWp1{_22qs9jFFeFSduqQZCY{82eHPhAfmb-~7l|`82Dal>?kCv8PP0cK}`zYsd zkw{rKbX2ur%jz+0cuf8bxb;5Q^tLmSrrBg0_- zZ!!!P=Kp_&QKLN(N5+oS^N9WqYIb$U5c?4bCbb>dON^kWo};_Z?ZQalB>2dh!@n_zbioAS6+9`TCeyL8ULM0Pxvwnxp2in&tSLUQjZ1>XogyYxcY~l7?qYXt>CudVnMWnAcMj;i z+66OP5F60i0FK6vT+uMYPU7)5bc*4{uxZ!}+vv;r+^K;QxRVNSyQwbGbpyhn_ic1i z#Reuo4eqE@w?E`)lSgN>Q#%hB^T-TfZsOGmrbsC*jxfbCRK5CpJ&(KxayP9o#P-*) z^q;*Cv*++EDf30d^kC)FIfwd8e>jSEqa)>vE>ILTIV0w&Txd>Ynjj4iJFNe9*nHLX9yxhJH`L`Fb30hr8$+13PT3l*`XIh zRbG{P5i8(XB80W)j+{{_oHfuxfuUw%YrMU4$SZGF^DXiya_iAe4BgMbx^sm?)#f(X zN;uM25)T+7sjLJfEU<#6ZJ(ozBLXYxXdzE~*qt`G7!ce?$sU`N5eg*4L6R_*yNJVP zksdhmhY>csAOyJ;$!EQ%?b<%*ZZ~dH>0|qkuGewza8{<*+40Y@NOWB(cr1wrJB$@Y z#8~#1{>eLQE1a%*q7XMukkh4G>2b1w8!wNml=)$%7e*4?5ocYn8xP6y>R3tmq+4{< zpYvr=g{pk!BggmXK^fhWhwB?Y%&=^dsWTWQ^=ez`P4d-{bx<)rYkH)(pkO-!7wc;-t#}ISo)7gD%hJ2y&Ig!ke2(u;-F62zeQBcrJ@F)(O5jv*^bJMb zRoniq$lQ%4(K%2VfhbE;AV(>I864>8k}zW?NL!!uBi*lcJ=d9*JNte4%Vw1MGzN2~ z$UGEeeQQ$tr<053?u@8l@|QrdMY$ECr-zHHGr@8eY*ckYt{Tu}Te%rJ4r2Ybb>Lgp3lJs4H&J z+|eH3q-G2InvoMt<;VSrpbJJ;WKl-AT@Mtf45!7?L(*Y)mrvXai`1ror3^>|` zzIx)TO^LA=2Ct(cyu{R#-Y-Pa{mq}>jmb{-NYjD$nGhA-;&D#&IO75Kya{un|SV!Ty zx5g{whZl8iK_dx-!-#r<%)gMzQ)Kf(XyE>Qit`h>E4((c2t>MdKr@jwz zV-!gW21{4&oJQhjr3*@kiAC3#-9YUMn(X{$2f)!rSrQ*?Rj9nnnXh?tdt1*6*`{Qp z*@ zPNS7Tov!Ky^YZdQ6}oP#nYHtooi|!Oz^;OWjsp&&LRNP%Or&2 z6QO^Kqq$uu#*q-AXT`xdMdVdlERFVI7<+rEcfgy<0NnRaJN|5;&gC@k?lbsYI&b+$s& z@^6g6;NCs1B$fk&xzH-9lC^frAF3#x)VW9k{Bnz-HUrhF)vTGOUId2RPb4UP;%bWBKAFp(OXgILxUqsfC;+aYk(J*n-kSm2-V(`3M&iK|E^T@77c8InUH|)JOsrFI3?~4s_-M`H=zeRV>emWb#N3Zm&wHZ&e{x| zDgCsB4$`-e|B3gNBcxtYo&;c%TW4r(O^x=Ko0A6W6rbZG(+tf?{7Xvldci^ z0-YH6N8LVLAAftQfTkOD@(6S8wQK9mnq|~O0HOr;*y}Bw+{$kc!9>Y*MjEG0rrWH( zxiWcuHrX#==In2l*bKcl8p>pq59Ro6{DOgxhCvwToVpU?DAhoVPC($&@jbN-C1)EK zDofVZl%{tso}6eQZxblJ9T+qP}nwr%6IZQHhO+ox??r@QBT^Yq`D z8x!BW?S~yZcErlc%3N7%)y2Pn!2I77h0GlPP_*eL%3B8uAdKAlMe>#=@BQqch)A>q zl~_v4oNb(0gtkvw!M(q%_)5c}qWEz$+vheJlY3@P*_pkxVO0j1t-3U-vB0vcB6cZk zNlra$?5H*oe${+9HD4Vm#O9gGPs_>i-)esUapZvWrPQ_eE`D*NU3u}D)S0!iiudh| z8|E4E)Y>k~_|Rbkjv|U;^rpNl)!f-I(}zd*(wgg4k*!Rk-O5f9%0p>$>{gO@GK)nW z)0z$Ku`0L3nu=7R)NUj)_cTH?okG?ox%7A372hbS@RM#S?W&XRJOr_;rd${n%!Pjt z7(e2pSUDoihiMQiiXP6^L@c&e$Hbv; zU)vtSP%I>mMwUmGMDx~-ldaZ{%8j{#D!1>-SXpiO@5P<4$*N#}R@>y_O1sJ`g}1s{ zQ~Vh=defgC9&gsq&Yho+htJ2hw6z?na7xHbdP98p6=n<+d{7l|I3*ISE_K!Pb z#}{*3FY6T}L`qg{bk=lh`@+1{7dLzSvc~*joA9#UO7Qksx)>WfAKyE9zTT>i%{pNY zkY1|lpVInjeiU0tacK8%G%JM|d8S8OAAPTMW*hq&UzFjNUX6HVV~(jbz_vh|1w`@Q zaLJ|9GK4cS1*o?yA~Mt>GCe^L0*3|!OzSl9a=(lS9yAFb&dJ9SK;>;U%?Zc23dmO_ zlQ~J=hnEEBL=s?(z)Tt6og{cp<2|5E5xQm=nyew3qI=BKH3=OPV3ui$9xz#(ggmSs zFsB=V2B)D6ODhr!f)0ZOJh%ue$h%lI$`S!DlcBJxm33fN<(L$hhjQxEISHp>+y{+L zLL3&dgGWT2{nT{U6G*%E|In13hqMQ485xz5azC?N4JgTjbKaBWA00>b)3VnP9vOwt%Y9Z!6Yg0-d=Hs))G!U(;ybrYIctmk*WDoRt-Vj~C1+!8t=c&atp|S#~aQ*m#4=b?VFh? zQ&nfzzAdZuu?K0fZ>2R=4UOBDZxI0ffb^){ll@|UD;zsNC(!Vo7 zC*Bu5{Z~=Y#rO!{>})D-{2oASU59sq+8izaY*vM;vAuw4TqI4Bi^ArPW_euiSADHD?}zHS}*^Ds0?zHanZ zfH!hJ*?O`7bFRs*WNCZfN(;-KD6!)m7FSLglD*N_iJsanrWJbA)`r>q*7L{p!}t59 z4D0l?q+VjDAGv$~v!-*SFZ%Q6zE)F!%6T;XRoomR&od7fzimM0b*6)Kt44g>45rFn z_=iB=aV2*;PSX2wO!@LeD3@=Mm}1O(%{QaU5=^LP2QJn)-GsB$;WBdZNz|F~cWUfh ztj+V=70;5&Z0B(KQpX<}uXWt$F3Mvka1=tyVhlHsrvik+g~*Vk343TnN)kwr%!qsni8X&ju&V!v z@QsB^EKKSiIhz4VOsUfGsaEOu$fjk_o7fOUhHb)AOwnhq#cu77PZBk)U@Mt9yh>*J45qjQi3q`KaXqwo~CU(AqZ1Zy7 z?IZ=O!ZK17*Q!(K(6drzFW^u*9I3TZ`ldmf7tEr2ApxkZxC4gkT|&sQ@iI=ZsOzO>yeFXwjWIoZ}(C;CmBWfbvqVWq3(*>64>!2_W+Ep9)8$=S;r;Y-`5XeA)gu7?)+u1b=L*9PS@Z|s@~LPr%Rh@g~d=MW#-~U2ER?lPJ7DC zimKFT&|(p83>A7`PbkTz8hhrq+FRL4Gqm(aj3*)mk;dp$@3XQRw)J6;bJ5=;N|qBrKnW=T3Y5a~rWnLZ_PBU1zeOyDtEvZ?1eG%wx#gturg4awh zi2Vzu9RCfbEdNLSo+S96(lPY*JCe6G`QW0nixQ-O6%r(~w1$!wJEvHvX>t_j;kN2C z42O!s=VscQdB{em8r^ygj>zv-S9g&BuEv@trz@&X^6GrOlR{E-X%$%cZMCd2?!ZX- z*?uKLq+8pL|93CG9(&fTYlP3A;=|*%hdBK%RU;8$aFE+t-iTz+9*VltKsjsovtb`R zNW?hHYtK7%$JcEa@6Nn$TVLT`S8>Nz)#QD7&+|`xt_19m=m(y0((>9HEUs5o*KFzD_QjeH{y$^*TbMNZ)7$9&BfJ) zYpZ8ne$&ubct`7e*GS6 z(W%pY=hnyV8x?B!uJY48dhltN_g@}dl7w+Zx3sSh18Hf_`{L2c(AV!Jzd%!`y1ihD zpGz!ArIErJU%jDtqd!K_xasVl*mixbA@;ab2SL#YI; zhN-DpQU=h1jO0U@e6fYCuF`{R_R)@?G_~S{ObX%u=M5wHWJ}p!A*6aMD6dd+JR26Yfk<>~XVQWlWI+WoXy7j11kpOYS^z^VKj&yIc);Ikh+oVenGj#hXg z0gB(+X4%r+F5l#>Z8)e;9i)`iG(@$_NW`ukW~zip>OaLEbQI9N?$dbwDTZ!r0ahRF8;ftZ*_ z>Dm~IaNrpkwV1VlhB)C}h=?MZz?sz`B8=2o=G~3rG7nCfL(k)eE!y7=yw(SgJy&*L zin?{3y&t~%U%k8Pq=dyvLPQDEQqpn$yo`o^PLp1~ft?QfiRI6mIM%(JD1S02rqObP z_5}b!`XxZPL=1#O%SzhWc%F3HpZrMhvT36}*LXLSK?p0-(XPDB^T!7Lsblf5A>v@< zTtfJT;|W7T6cFSQU=St$2yCZ?{DHbQjp38-(kh~DKGL#@Dl|4mAG?HQQ?`qp9i)ql z@%0m|*PpD7Hq%!%KRu6{_Ux$cR2b^Tnkf}&vVIahu%Y|R?v0;WyjXtU()eOyQ~d<9 zX0?_zV;d`O!|=7$QuD zV|EhfE*lz$P##xKL&yYyzH^V!t^z`8b(8IKWvZ_wE-&w*cPXxk2b>xFl5J71KZC~r zLXT@d!vy^EI4Zl?ZpMg8@(O%V;z{+wF?7F2 z8>vw@SwMj`37!@mGZJ#F7dxYyU8s28G?Ogvu!q^jHaq`VGiFIUQn@kZ$(aDD+1*VS zwm3@rz}x_+k|aQlYiro;6z!Q9#Q5k5Z)4;m0PkfH%V5;$evps7Aj;1LD#t~O@ z=hon<3m%-Y1CNeqtN9o_@HGO8yF^$CG9e6ecmmgHwO}Z|NfxWe#gZNwRtR|F%E_!c zuBLxIuDArU9eowaa++;`c*hjDn)fcwBLsLyg?(bFT;w24iM)0~(fnx}@-L>( zmKjuPgE$WD?vG5qA1#X9Dw1H9(nX9kdoW2XGK&{9J(3t1^O#(`TG^Tc2#?S1yr=N) zDPC1f0f{aybH;dJ@dxVU%Fwq_p13@`)$hL0?SVA-^w-7+tQ5VgAY#hAPdG@jo*-61 z-=s6@JE_Dr0O6F(88AVx*`^NK7w-=Eyz=m~h!|ZESk$hkKkgs_HN`*FFtQ zbweOrAFd(xP(g{lJb|dhMvPOSzv=1dHf#?VfJ!Dh(*%L-vA+PIz*RdD*Ef#2rESl>uNPL@D|FHTTwaR=Y2L2v4}n?~gr~#JYjyo>pnY zX1*c3D>|_WJZRJ>Legf=r1DFAOEgAgcMyptBA3`K_~7zgB8WuaKOBW%qH4K)6^kv9 z_G8+Jwukd`FF%wq#~~KJ>i1LkP#%D9O>nsQ8SB zRL;^P-=!}f!302tUHG`Kf=lp4*x~Bc->&p8sA&OsLp4vOymN=O`b~}UI z++HtCr_x)vwypIijc(SlQnqqYn%O_UPuT=Q-?Haz%P1>y4kIyeBsaHpbZfS*Ye18G zyd}&mc#Uw%>|Qe zBbv`Xxqt(od6;8aD8dPVSAs(M&1nTq zfROJeaw^g~yUrFL5k`A4c(qywfF(c^rJp7tZIJplA`){o$<#(;SG{5gAm_~rtqYK zA#X~%LEE&7qOKBzUYs{hVgv6!vs{&xl?~4U*y=A*|=TF)Hn7CJty04AH$# z#+Yi?T7?sh*_3;5jb#=t7~Qml-qX0&$RGm5$&I!54rwl&YJXQ<0i=)5DKkxy=Tw%P zYNcD+hBSx3-)dUO1wX9Tjg06GD~oP^e=gFV>L7IQ(@ID209}oZuxITwEtqmq#rMsa z!H0^Ul)<%c>$=v}o5ytp7i^05AZeBT)apeENS-VgJ7s88ZjxKdcjKG@wW9I5LM8VZ3_ybnOnHua_T7P#IOR=zeGI|h&~xJZ?D0hr=tAJ_3;sy}7?vI;Hp)JI z;8*h|7DFV3j!u|ZfwZd0dkq4u1EElAo(yUCXj!%&2nv17c`aE?`MsDwekLN?NyR9L zMH!a><|)1AEzM4`*ii<#xB=C{B87&ZfkLf1EG2BZRg9G)Q;|4IiJFPBf@5!K;S(g4 zS*t)M)nQ*kBZ*d#I3mINfRUk88Ji}#7GevRQmZz;vbYywk)cDH-}DQ(X98Wg zSFJ9;HO8Icm?WU%%z$X{k)bMG!V+b;mhyMiA?j`Z=$R!Gx#rw^a=zDS8u-IwZ3YBK zvruMTB_dh0sxaRco`Q}O@x=IorqWo;UsOnFd5)S};)U~%EToIxEEiMzZh4C~W5z7}TY3%*Xn}#o3)j;Zrg386>mdu$ z!@@x)YBOhPUtDU(jt+e7<(#}?eVn=TC%*?-Al)v0_I2tA)p&f_Pd4GdzV?`#Qhd%H z%(ff5EIG`a0`z%F@t7ay?rarx?g}q0JXG2-6KCcujeoEdhVa3EQs6-1iKZ%2<+kLL zFcxS=@5b@KOKNbI6B8Ta#8mk*u)`IGN-s?K*BZ4!C)vgboKnjGbs8977jo(_5o} z>KidXEvz_r@F|~Ty=Z!xrjpfg!ss#FAjphM_4Rx*nLGbtoFSk_6RWs*ZDrB6#zEip zvB&hA{1m+kEc4|Chn#w_S;tD|sFrXJ)CORFf6AHLWNK zp`>CGhM36+O?0imCU#@w>RHH7LeYYvJuXs5|Sq5y4lulvw zECCMq%J>6I%8}wye0{SiVBE$(GqA+qY7ggx$?LbM1+13z%V|Z(w=}Gv^FUScq3v8n zMkSwCz4F5*T)^B||5WlrNBylAN}&ZEt2t59$W5~V)mHZP3`5lOw7ltxCpJ5A@F0js z*svhblhw6`D>2q*Blb6d+OnV$FdK8TAHEwpe@rN}{@~ofIsde%4@(O^qO1XLCf#U< z(2=%V*MQuQIAm^u0Z?J{OY)X*o1z3U&>GuswPy4(Z=c=o`mY69t4#vzXt#)k4%vyYd^p_gc`lE0>_X7_&`NFngHg;CPD5@ac^p44T>w~rS1>VJ@++Cjjb zzz)F5EvYp?xz)GhE#r2vlG^!`EahVBQWtuy*J$9+BWuP%|N3B8e`$F}n<%F>R>yC+ z8mMopOsU zHu3z@ojV+yU-t^qJU@bFK>@a0h|1YHm~A6zCaR{Z89Xw&cf2lI9jfT9jNvKfB!|_5 z;J3RC5VzU}9Ntn?7*Q(LXg`#;0)Tj^JZ%4d`;^hotQ|DtY3DiTuML~&-u>dc0@oit# z8UZsGCMc(Cg?->M!N^i!a@lCWFMvIsN0-CtUTd}m24?=Hmk*&YmKElaQl1&7HBWYr zPzy)gp>&wv;nh+tvJuFI->9OwI(O`HQWuZ{y)ox`J~;uvb_Vt`*TYB4>2nC$<@n8utQ zs`_25ytE;%ThXJ0f*dV6YaFHB`5Oc`SdJGz`^c7$X8~^Am<$Q^&nb$ao1>y0sIFb> zawYVNE*%TI|E%rWea8}n$QkUc2OOtZE)Lo2e)I9_`o6zgp)?Wu z=oRqVUnY9sNoOPRiO1lNq6BYxv73^=*0+54XWv{9cbw$2jiImho3ZtnStM>Tp)0h? zd?f9BHq_A(Z@V(wD6r(8cw1DJQ!H65EbocXF)c$sZj4*f&aD%LgMji`_IU~|T z_fm7U^ym_tk`Xgx1NsCwj|03zn$RD)-+h%Kf z-(+G79()f&)c00A;C(^Fjv$%gzKQ@^!DdCF7U+jF8UCyjY$hPJfeW#SsI&(w@&WQ zfGV*|a(#{NyFO?N2(=Gh7~c&SO0MGxXw^dB^|A-x`^#` z_buEs`%tquhRMrb-eT0h%&+lj1?Y0Z-h04|PK^rR#tlMeS9vw6dPKe5Z(liZVP4Xn zEsSQrlr>C6>3MLKa@e23;@b0Wz}|iA4ut}CQpzn)u2_+=$(8QPfA+biJwm-s`FD67 z=7?%{m|AyKcdW1NO=pS|cVdIvD=f{=(U9IqG~DXZyiQOUME{~M#?g52)->XusgU|C zo4s(2SMlqNhtjevzXBUi>)v%g^~%7+ipt>G=?y}O=;rLIZD{DskzQsQOSk8?x4@{u z{(fZ0n-Li}Xu9}L7M8K`_b`CbW$X5EhfFdJ>xAk=(!v6O zBFD}r6|V~hf5_m)203*DQ4^g{@0+$?js5sVypT^_O8u&AtN#0ZIuoc3`C_(yCJ|Lz zjTTa0-_wS>={)%+@;*MRfhN3Z-$tVxlq0)oe=rg$siQKP^C^L#)073yahaqo!arJ38 zz96vRfyA-dz}9fUtAeeWQG$*zRqHNf?F2Yx>+Q{|0p?LugdR+_nkMN=N*DrnVM+*g8Q6?`< zNEc{=9>p9LV@68wKzGcDpa8MQp9+VeCYaX^fte3&Pjx=ulZj^V7fc}gG8swo97?Lz z5Tb|IX*D$84HE=^KfKLQEPn#>r0KvPa=kEA(26(xF1v&m8Z+FpsJ#qC(oaN=on&zf z3|{N6e77O|Y;>l6kVzMzXLUyIHm)Zzmv-uy<%r4%rEZ|UKtfr?C=gv-9Wp#LO3^li z;+@0vE)_~s0iBO}Ll-O^(a{i1OHIF&2K0jS)w8SOcl%4yobjkbx#N6oTN(TPX;4k7 zqHNi=ippVr!md2p9R7z%nffB zub(qoNLxw~ElC*xNH{CCJ! zP`A!Oam+V2j0*6AeB@*RWvxe%DxYtqTR#g)`kMseI%WZfOhYAC0A?`VBhmq3JG)Pl zUQ5RZ&x@nMAPm$U(~3!pw5AkVyqBDg8i^Z%&12!Bn*pD|x^x^GzCtFXq6{|ICtZFo zD5{KZXiShvgP{ zWqouXLi(Y)*E-9a;cSo=a}eXn!B`IPz$Ex2=J3*d0PWU#C3J51{+cy*nXC6oKvfCv zUt5z9nf-CjHMM+A(wBpPg@FEeRAjyZx=reEP- zVo?4ukvHs{J_D7z-XI%M2#Bl0+#u4?WPYTbB0b+un?P{}>~qI>xq^tjhzrW(a=ARd zh7J-g>2+=LAwCyJ6HB96yXI52WRv{PuCMU1Ft4vEU0|N${8<$GoQl0v97^pM)cD9a zB<_z-j<9!$;NBD0yzJws`?-euPPg?2q7rZ6$j2{yz55U2dkp>^cihv={Y$LdOTx7f z4|gz0;%^?4X$Qz}^+xZ5BUM*u^3lH{6AOh=?N;hc%3F7<1DFWQa-;lp`#MVGf9m$QYy2Wqo9Pq^5~akf9;4jSw3`G^A*V z`TjQ>pgL@21ly2WPkaRlZiL&AyDnfumJNwMnBqXp10g>cbw}s}$v>C}K>!qiK$HwY zOauYikn$hGz=A037wLgWU!))M7abZ7i4QGlYNoEKph%=dLf=`Np0@XwaJL2y^>16o zwL(!Q6(zb3LS5n=VY2u&TKN~Zi!ayPG2fG?iJM37-R$1E&zNiXnxD;Y^BSFMH@JGd zdPjlJepcWP!9qcO*pHFT1S}y+@Hq@0^;QWtM~Pd)24TA1!>8Gn0_t!!IBdQvt{M|Q zQ#lxY?rys`{$168`|9+WB<(5JhpF;`N@hqW3*s^R2o%>&xcx%Ot@dg#(kNgq(!?MY zSv4BuDz%Z4#`T`du`}44Eu7{dpmBYeUn%!Qe$Wm}(LUpq-Qr2P;y>FyWE-cnn%=y8<_9wVCCAYt+Cik#yV+ zGMSPm>8&ilc;XE(?d~kWsIk$5ndvLi*eT#C<4SAksj5e1?AEjO(ad1a=jnkYJY`LK zr(mxJFVXyCpWXWBS(cLQM~*9>&tBcnDFD;MT)o52yb2EOH`pkCKAIwzL-Y?WTPJHC zm+l(inOP9EKZ-~7+&1owcgC`&cjEJQnmQ4~wo9G;u+iQMk{$5cNGJ*ivkDLO^G70} z(lc=~(JG_EoE-2aOi;!oHQ;e}{L@#JQ4uyK#ux4Bx-hJ}DmgjUCX}9@cAk2Y1tqGd zU<1?FV#|Y?#I3+NUN(=>n_ClwbEdE6`eO$^ckNe;q1I1dlJ0j1^DET(QeMJ!Pi9?} z6813<$_RM<@M%hj7VAUcKL+;#F6uAur5PG9cis}zw)5uK;1>DGo%ikcMXoleH}SMu z{N616!Nswe)nI6O!i8XnTqi4;vc8)q~h>`9o(AT78E!NWAIMe~0FWPYSx@D8j;^QAiU= z=_NAK!H^RMhd`1^Yhl8N7&cMndzR~y$?P=17+uR_sRp46JU9;ylo9v%t`svf$!s;apC z?6lubvTrE4eW;w>2nEMtj83Z)bRlh>pCaKQVW}Z3sHkQqCxBn%16A3$w5n7!Y%y{Z z5>w-SuFwhjTftH{AmOpld`Cc=)u1_(o0RgsRuJNJafF{cE(k;Nj zpV5C1rWl@0U=sD#yNZ4f(~(!aOPC?TvQA1%5^e?re z-=lJ4!!gF%YUOma(SunQfws%0CisAHj}vC*M8x_Auw^Q6Bny_@rWE&VWT4E&Kr;+J zW%gK?MoHx-!9RWXAI?;;Om_)mGN4HhQql`jClf`sx?JjPi`^X{dWy2C88g$y4*>t2YO|5sS`@>6H2)SXy5n!3a#Y&5Gr)bb0jGD~ANu6Q*z z95jYz@i(#mr0;P@MugvCKTI-Z3E$PdEmQedW%pQ;g~cB%a>iNVhGJ9{tkN4 z>?~lTSzVZG6u%ZbkikPzfc6{Md2z^8$VEUg*hKA@LQm9jYa%p@rz}lpY%$JF49&zX z9L~BiMG&PZ0U<3HUvw-*Y;^@SRUOdIjbKl1^rZlH%vnzChzbEt)#Z@ch>BH~Z zM00l+pe@&G1FJI{(kY}3ew5iCU!1#WXez-4X=|;RPQ$0s?O4Rx!d02Lv#^>bGc9vV zrGvt1<;zH`lFc)MLXLEpYNi0t4~Ec)T=vnzkdTOjbTKdOH%(&c`X)q_&`~@#QCqt+ zzV3q~(p;>psGrnZ9ERW0bNaaK&YtjsIcRyoYxZN>$p1LS3UhlU&L@B$$fXhLaJ*M+ zF!-Qu6wh@5R&rEqngc$W{LRO~@Yo8XZpQdyhr|@$_Gy1K14_b1t%azY9=TN58|&Z% zM9(1Tye^Rl<)H@{u1sUadgut}q?c8D^&}QAhxXiPqprri#i}8Zci1W9@VMK>2Tzo)}!sUv#&~2&-4D3SSE){jg-S} zOv>#qvKFI$kRNf0?ua23c?-8IJRm`3Pu1A%ge;rDJq56lco}|O-#TwnA_oPTO)W8LY3Ru)kvD8t502oZDELL!ja-_> zv#?n;b8A?Y^ZqndlNEB!tLMWIrW9m5KESDJUfC>1hb7i>HBui;IWV@+0~@d~`tX0$VwpN<{VH z4P<#Gs+4cg({I+bwKXf_`m_@CqygbQn=po^N;Q8h%K+#29n09Uarn2(>K8N}Nw_NT zz?gNbU${Ej0BDxZsE#frI6_WP0>t&JA@KzjW9{B>B>+BqU3Z=yg&rni6K`G>o|mUL zQ#|?(5>!+zSzUneNQ3Z*i#;gopV%#%6w*DkbxL1&PjVFa&>ERZS4`}%rtHey1cdSj zfyqh5D0<6>*+q|Sr`?s*etUy!QeD4f1pqM5wCTD7fqUi)Oa9HK!8fnymCBG( znrN5bcLc3Kltx*_eU>SM+xPVJKu-QiB24Fwqk!`VhJFP3&gCjhcR_>)lU6XVz|jKB z38)C#v>m07+j)^g#y=cNk$f3Yx*rqETQGV%KOPHO zRLFY#7Z=>K*q6WG-+R(DH<;|t@*TkBpic8+qNAKgdJ))c;CZ%0+WL)Ez59DJzfil< zdAm^QR%}|Jbq*!n(@c6Zx(HN`;;oJRP7r4EvI}Re&EAzwP?yC6=G5hazhwY4{jk*V z4ZA{?|6Vc-^k?S$o^N~Ps&h97ugm)|XXT8?eCG}4H#3j8+g!yiH?2p?)kOO3T^B&# z8}*R4cc7$@v*a>7;x3P|IJ{#B&<}#nUN~Uom1PdT!~zS4QBueDo+}QP{ZY81BiSW- znt~%Z>mBJ|bsLKIw5zL{NRZous%uALiIZ8Ej~?*EU;v5#;59N+c=U{g^V44jlquL$;F1H2GKYJjJW-mv3Bvytc@!XHVXhO5U7WO-vZ_(m?{yjB=R2KO>vc6c}bIMM)k4ky3O zJ7ml{2`^(}6szlF;%rPrC?c27p{^R$wA@HBo96Hgn}6n zw1eM3$`zL?pPHw)!}WV)pi6kS#DdW{n$c|4gmL3}c?ax#snVdu15^v6s3X^nv z{TKSKK|6gy*kF+_(QD&$^a4)u;aCo~7NcL>I_&g555WHsi?Ozr4i3JAaWJz~;X#yEUY*8TwrrQyAPEr)7@!0lmVd=QfdKmOtw&N_!o16+ zLOz1D<|P+`Myc>E7*3ZS4e<{*+_x3c+gR1pW52XtoNQ!0$!mC_`vcse+k-%%K5?mJ z)lsmTrCy4vy5Y02r(bSg_7f%40=k$l79 z0W)BnOj8^5DFQrmzBJ%`M9?hWe+8+A^-menZ|-XspYROAC#ixjcW$`XJ3#_hpm!cM z+f8lwnKUCyTuv{uh3}nR6t2N5Z%KeGaB&!6Gp?ZQ`>jKZf}=HE;JK{{H&cO{(|$Js z+I$d{E-zeVGMBoWp$T_qAlKM9ez;Eg@zBu3zAz@nGewD9?xK(~hSDF+gl2o58&Yi1 z0!jJTMX8u>zQ&b`7-X>-u_<TH9~o9;Q-|vp_mZc>WQJLCG4Qzq`bgFP%zZG5e&530Y4BrBONH0W@j#@rUG^0AB#-VYrNhqs4zsYzV|5^qtr%=JsiR?%U-enTB&;Z>+4SRW)6<=h&=^N_BWNC#CQxR77(VfGAaY)= zgT0*x3?JI}Jzf~&^)x-~=QxM+TZElMK-2`?*Yx~MOvhfkrd82tJuv>nUm!)+M#a08 zeTR%l_psT-f~Xb;%m&JaS8b~Fiq+5Ha)GMYGNakgS#low7@*-rW6}&2wBu;feFT=o z65q%D2ncUba&4HkGmc`fgV{;O7^s2dQYtkpeC}T>eVBbUg^zshNx>z14ZvniJ9SUT zlfStScVACUqyFWz%fa68e;N~tM~74hA&*IpQAB@Yxb!28ic*5|Ih|tf;ld zA~IztJ^?4$VDWx;1nd$-F~LK}vp`XUXcu6Hio#mpC~Lv8cKki+rXn^kr13G>p3uJ| zBkLddneIE+RZ+psiG+5;@EGN!p^*vq6L$JsCaWD@Bw~_29;#QH|nz3qaPkp zR^6&j=L{1{M=;gGh4kX_kuwQG)(0eX%|PjHgl8iMm0eslfSa|9ZnyAOhMV!`%d_?I zPqd<|PDjH{Jn=RdoYOU^tjwk3NHWMwrh++}LsK1>jCF-9+*&ci#3qU@QO$G^sX^S6 z+~Xqr{T->`EZw8D+-H4EMYbdP4vG>U$_@T0&wKc>L`Ze-&v%-gm;d2CZ1YiD9_OWS zAMZP?pZwPVHvx7*f;_B@qujPxMs_0(6-Kwr$3X{(tk~XkgE>p0Tt`ezy~#jvghRxh8Onl|#dW#v|p)=Z>>k)AC3hyPr`Xl7aUXxgu2oS@ww}r77`KA5<*= z*!AuHP!m4Ssorb9?{fR?B_0Mp@%?xMew_QTuZ#ul9{3k8{Ehqp;y4m?7SY2#yo44I z%rS#GdQ5F1>|f?r-FN~RXY&he_p7?=>l#mrNJOdY9^C(AhV2-0w^~ z(dxRx8@aNq(SwE)T~6#!{;Gmk9lSJt*{8tc*zTCzv5<*RZrc2=2sDNTQE(H&tW&eh z%vMhXC8tk z&?1FPvk1t;CJj4xc1*hYJaZbx>yuK07N_z>k18EWJ40Q$Nls1R)@QXHqe&O~4n~i1 z0jpUvtgV*Ui|um$RJ@o4Y_hk3L?d9zOqUvRBu;BgR6 z(Q;ycJ{~tKy7htc28^nnf!Z=mHkS(zRa!BWC;iuo)Stn%!~Q*6SQ3_#ZnhNW~c2owy(0+FKP=E8ymBO9buDk&C^FNsTp(#ivl%nk;_XW z4Vfa)E%zH94OQM~Yb)AKd$YaFc>!Arf?Bh<{RHw`W}Mm|+gwb`7{CK5{Y z3+D5}!fYqpd?*k=$QF~TA~}2_n!f6#%^UMPql_ZjWsX|hRmjoB$@8F5!`Jr0mS{f z*nbtHM(*j?-g8ap`vgkP6GN8vut^Cb>`E!IaLi$bSw|E*{&P9R=4`Z!AodkAqx>& zvQ|JI_|~DlV-%88E5&6?D>L<1yF`Zqm`{`@3+r@>>sApxL>?2TFs{U`K&fI4I$o^} z>9w&`vAYj}CYad%fXx`qqgbxh)6qyO3fVH@CIM0d+*;*+ z2qW`r7g5)TMFY7Qw=Lp9XrotuDI!L0ssJd}Kx6ZNNEv0UZ)JE6Ho{6xp z`b%DH$DO~QD{Gwwa(2~;;hDtx>fRsXwSFs&&S*bX`)v5MtGsh!^x4|xBOf+wJ}I+Q z@c`rJl+yRR73d21PSu{Kr-!|qF`C-c;%2uAQ7pH4kIG|;Au=@!?~^8LP5tG8$ntRA zs&aUjlmwmQb;Tf<@w98lK%z>1d`;-s2=4QEuEPQ{`tZw=aBhNWCcwd8ZhbE~aLJb^ zj8+ov2b!hO)sp@fW$zFqO1NlimTlX%ZQHhuUAAr8w!O=?ZQFL$+pkCGMBna+JIHC~ zEc0Kv@PRDdGf)PMki3W@J>2KCMuA%w5xBDg3N00Z6`hH4Kd|}1w_a?0dIpk^@h%Z3 zk!r<&jX?SeBAqXKbZx{TM^o?NY#s38#>@yKqvT0cI~q+b1qzsZgVf^f+;#k0$;jG% z^4tfe2%kCi&F3k92kz4KsklL1Q}2>UqE#3WTd$54?bnF6KpEv)zbP z;;eM_1U%UTSHFnwB z2_-qrGC7bB?WOp^%f<6CRMWG2-=^2MR86>)Z_$9k#H94~@>hQs@9gS- zuq*$gFeYYc<810kFJ@!tY${@EY;R&pFJo$F?rcH8^k2Q`|LcXa)YJBUdG7p1-2Qa^ z4hSH{0|A`-LMr|b5BQI0_5aonWoBe%`Oi*gjXJanvfJN046+^y+m`bLOztGBOC#Fw zl_J;eolE12XTb2naMuJ7pkM(cAw2}49l~)ELih&)0f{4A1&<(5RBOxY4egfgmF*Xe z>z(VJjV7;~-0Pcfc-)yA+##Q*+-)zf*Q=u=ey0hmTbxk!zn{rkywR8kxVNb)qlMB=&==_<|=r3M|PZpN4- zZL;zcieV+fupQ}lRBt=h-gIJg)W;GWP0YNe-?s*xnJS}%XeSMYA#~M8&WZ{gIo7;c z%A|3U-Q6xtGJ08LX=(PfxmOkYT8*v>&&L6$iaIm%<5E1ndV1nZ4Y5oa(!=ENl5C@% zXzKEExlgA)O(RRvHlV_`78cB`{OLJ03-D&>4cO~|7oj@AuzZ;_h-Bbnp%4W013}Vw zfXd+F_((}73Hxz{2cRs-_^f*x;a-!?MAsA7lV=bL!NfaQ8Y5IXAESyt=TA)Mjk`3x zT?Zwog{Z#`3n}T3YY*>7B)ZWuF^s-GNs=Rdo~^qQ>CLX4ThX|S<#5n*RE3@E(#`H( zcUk$!cK?i4I})wS6=+$YC|qoHNbO*X;bJufdL`^u{i(ON0TE|U5Pnn)m27eFqMUn% z9X1s2FoE)Ks@A#m_ivpim%~k;v;zZ=O$^`e$Ac0@=R)Q<=`~q4=3J3`{6audW0?9U zS^|$e$y~s}tKW&-nGKlb4JFm3eM z=eS(#!EzsQP#s8CC1-O)1Po8(CeeVYTVPwCGL2W(t(zDOY-`t^#HoMHt%Yelb+|aW z7r#4eDZjd*(`Mug10=EOqffIUgn$&mm&`l4jf59Ng2KwlDcD+KH{u^&0{p<`eO~em zY0l~Qg`9yte(it;a^Y~Q$?bhd_ngW-IrPZSPkh_9x=IbyF`8VzW47LAHim86^{>$@ z5URTS%|_5D6NdWeGLctk4KP2lvT>Gt7IlM2%t2dGBs` z$vhnGSiQ2{Qri@zcxf37p{yXi{YzF5r80vUe(0=kzZ`8#bIsLAprfBXO3L+)p)T+E z+?>R@k*e;iN|a1B``eA~E)^9V`=wV=KzB`BJ|bG<6UvA64WEOq@AByxoB*FiZ7&e? zEaz3I5k0bcN}8I!zkq;QX#P-$)oN2fbJ#SeS|_02)B+-7l4dz7{2P?sM#X}FJz($a9r)2JqYvyFzon5xRluh8m;(iB*48t>Ez=(`SZI(EI*+NzOhOdnGeAI>7%C3>@G8O?%sw{lHokLjt z?EMIfo(RH5_p;Hkyt+}#e9HH!c7{}BVhmSVAC|@at=j|FBg#_v>$ z)M+{ug_6HsHsMFoS0)?SBh;)yS*3DVS@=N%q**+S=w#fsNwnzD9EEVcq^25#wJST_ z$JVrMBP_GCn^+nY;UHSQZZs7r=J%PY-= zMc&sNJm(J@#Sh+&{$%Hgt1FYh1UkttpHpob&j1*A-Y;rPfKfxGe59A0Go!mm&yo3r@~J*1NJ0p4h=^LTG|kQ*Ai&@xBC5M zkh0InV&O0;tIJCJe6yq1kT zn+0Ubxb6MHc6V*=kJAdr1tc#@&k4!?y;qlR4DB0eJz(v#>qBk6KcHG5N&?Fx)usYuFOc`WWV%>)g55FJgTqToP{4z_^y9IWjhH$P0% z&gu0tXTz%ihASr-;HT5lwy?#{&n>zasT{yn^Xb`S0Uc*vx z@w*hon|h!a0D;uzbwZsR+W0^%+3Dv)Qe0uHJ)%{J5a}wv}e8)*nPerc$3ncAXv@c=SzJ~B$`kULQ zK?<#z-hA-X+aZa`d)C1hr+0-3B$v>eArcP>dTBP-JOuB)|h3l`WAY2V7KeU>1$eX*CY zNc{58ChY0>lUZ9%5P=~70a7bnV59`&~Tl7fI%JpsMJf^s9PZD4$mNC z4v803>EaLH8tsI0f93d}DqBZTK@#0T{*yZnzr`)6*ZlZ@x5Cnb#YyaoZlhy-=fYmM zalkB@$AlzzAch1O(AxXm)3*9Zn9&85qe z+YYAC8mi)aFRR`;gXcEid3=IIklE$)%N5|yO&(UMj~gHL0F=A74r#1K2J1K+I1)LS z+6=d(Frw4?ez0$CoJq>ySe3+e&zOaA3yC4)6Z^qvG#hP9Dww4!nJ{2KO4=+h223_~9bgXuI3jH!h%rY9;2btJAel9y3LDUY!X z%REV@&)CV%>q`Gt*K6nP_O93OZk}PNrFmX=Z_CQ7PgK+OH4e_z)%Eppl{&3nlgTtT zb(c}lfV$Y*hiF*cQzUG5^9nry-4eCd*MyQ`@f{V%Bal7$*ma0H7(^|SVKDIK4b8c; z>zmj2SlJ9Q_%GALF!)xLtLqCn*x{jnJRxzI2}f_JJb9j*udes#s7G|pApo~mC!%ZJ zModGN-EZi(*Y82`qYrV{ck0JS$SBw_ne9_lEMz2vTMnDYO0*_45m8cM5D<{DZkc=z zo6iD?xA*2UKhZ{uAIa*ea7UzZN3CA(*fRI{^Wb>xWS6%P5t5Nm;EuB{^SXtffzD-&1xO<3{hU!zxbZr{E&KxMFM z+;iJml`R30Y+IC&gjm$zxbKX2HleVh(TawFd>N}Qx=BPC8&bXkiIeVClcX@eOZ-i~g2p#j+X>F)#C=xW`2 zj1~|1Wi#{~@K}j-{RW3|Svgr4uHc=1O?k$7_I{Ik7!1Y&qX1M9e=rUZg3D|iyw@Gl z7Lmw#J%WZ{lVMq4zV1OE^F4y3vduY0Id***XGBj5o!(9Bo$oe-Zo5$UhWy4d3d)Kp z2gN4!Qn!6NT-=Ak$BF5FO+Wq-)tDYr=*7jlvF;Ie zVQ>~%To2Y_9qtdQM!$W&UhXXq`STcz2l^xAkPpdR<-T6o;TkXLSWI(bn6TH%$6sP> z&&HjcZE168`K01XU+J!4(==5;&%MD+%*{;gG`mP1gx?_4R%-b(En?_l0h#RgW!U1o z-CbVHSLL>g;2bFeYTt_RKi$mR22cMKuV)LxeDuKjWsOuM$3p^~hg1qtfEdg5gg}(; z(9Gx|6IxzAD?u-(ag40P88%N11cH{o&yqV}?tuQp$zAvR zmJwRTPhuTe3Jx0`3JzNxVqsfZVtJr5mcJ=Qca;Wd^Ak}A%~;oBHRS*G;VoO;KXN9B zg#wLFvz{P-I^A7$0wWGIA)zxqwCN_cdFi}e`07OJPtr^3zrNZGSlz~-p?VBlzB5dI zJ&G4ycQSDhSox$^wlm^V;&rC4%Ac_ynQMQcF5a z=ggrJ(3qyz@m<>=67xbOq6nvk*r!AeaHHAMTcZ5mx*_{qM4P=qnHtUsn9s+Pg(t6XSKM|)b8LHD9$_1w*8Br; zN!!@eHnY0ghoSVm-;obr*Mt8%gtJI2c8Gce+d?mhT`qrM=#rH`XLybgoO>7?zj8}` zF5EiPrl>1{ZtE_|zwFJT4voeCHh#^*z-=+%-@m z5eCmBvc@5|5@w&6Od-&gFG6rHqJtDP1MS(;38eAm#lgF58FN8--MhlPSV%f`Eqdpa z=>Ehk4wzvs0xd%Ub2=P5_r*Df#K84(H-DDdPP5$SKCz2z>xzL-drn=w+3scFAV{2% zl}%KyOra4t-yMGro7vix;tUzhla;rU(E#HAncdVYVY7^vkN_)BI=-q`Mk<$n<6+2j zoJwtsJ=E`0EO(ier+Q@n7(jyvUS`x|?D9?f_%c70z4PoMdn5LHO;I|2_NpJda-@nABg?u5m zezczTAxBK~6dy|;N$Bve)le2JBuw{M1v00i=FrzkHt&HP4ljUb0B6g|8qtF^bHoS= zzvgg9fJ1o@&)y3@7x}r*zDTTl%_Dw7{hLZnA;eXQ1l?8O#!%bI?aE)XiN8t98$#_T z4|aVH{`EqpMv6{%OR|8i&JBkjB0uJ~C@+i4?)77Wml)0cV%JveBC<*q{*fpIc_Zj=a2S166*}_;BwfO#A z&pPfD_8O}}UyROnv`eM{&H?T9qV^h(KwgS-eKSIB5X9IRBjLB1w`*Y=OBo{#r~FRG zdGno;Jy8ygD=B=W+>_Le&2mr6hq*=g#B(C41nxX&$nlRhgZsSQ8R=$ZqZL%m9Vz6f z=Fgq@qR(}HBH9GtL^lyE}&(XQA$e5qJDF*KMfjMo{!Ru^=ZGTu-*q;A$53{E1 zMM5g>44o-+TF-sV-519O_6bs}L$d?#(Xhtl@%~y@54@;H2&-Mo@d;a_AOpQQ6r{7} zJ{$JD9xBi({7KPP&k}SgAvL}7kEp*Dw^Q+9es0f+ z{mL|$88Vz5=eeTA?jPGfL8gd$&@kYzZ5#Y{JU{p2;0l1?&a#XmR3z4gN(AA-OGE5h zo6vt_KXVM}8{yZS*&^Q=SaCU0V~_m;Yhzo%9QQTuEzd?mVg{_7fO`@0!uR@$UB<4H z0%mr+4u{(0kCpZznklk;B$9gjp;z|5_6iib{my*2;#Yo8TGT%T-ZJgtJvgn9nbpY5 z%bU!Epy2A)?~?{s<#Yd$Z6B^X=)LwZ3kKJs)YmLtCf+)b*{;=7mfDhU_X~I{nUZ*yMySr_k*OLw|;$_23uyprxh#&@g)UA`pQ8_Ti^PteQL*@o5zt3#8FhK2dp$9 zsR32{_J{S^GzX^wwCEm=7I@Nyu2WVOkZGy9s*JK!}?{u_p0U?(S@EIXDE z9NYeGTS2;*9K%!q7{eyk!f41R(kFJWlIPchlwva2%)MC7EFY#A zhJU8eAq~;IXm~ArzN$anP1#MdH1B45Ekji8QW@CA!3TSqlpwX1=97!iC)r!5+k_KD zV9SP&x%bcEonvR2!-L$ip|DEYbx739+@v#B%U3f5AU_cB!4BTXs11wq%h!Z&5TPNO z#$5BaUlZWNKr^k=MMt?hj6(C5%#$euR^)uat>P0v%1#e}ebJsCB?L>DmH_s0l(AJ1 zutIIEuP+Y18!qd@yO#i{+oRRs`-zC|{^~D9?V^7}7snaWintb_7*d69xqe}}g^oaYaqP@n zhApO_rNl@+bm!N3D#X#rAk=&NqF!p4v<+>I;+F{SE{sj#`Vja_*w;)co>tb9NC08d zZ@Xrfg66BFmTvz8B*nO}&yX3jxAx~n5X%d?i4=FM6RtnNs0SJLZDhvlGZvXE;jcqT zVeIlVc@lwj{tv`~yvp<7!6`u`65os0&>uK=o9InIw};wWu1(i3_fb%bKsgsv5+#{t zIz7OBk`1iYB^AB(wL=$Y9m>OwlFa{v~ZS-iP@$MZ#Yy;P`rv@RkaV<2Iq zHlxfpwvk(TOC>jBU*3!NtJd;E$(Enu5%~Av8b7VHdC=I(vS$uvs*FeI?GK9``-MCQ z$4ApYPVcg8`B=~A=e4?d{hE%}7nWp(iEeCDkd35ltmUw)iRpYDMR>EpQIUe8D~@8&jo=(`%iE;xCd%*c8_rbM;UxxDFvwMqRP{v33_MH?;tX~IN)dwsjuYQm%BLkh3W#!OUo_)>r!A9x8{Ze zOXo(tX`lgMZ@kHdRUXAFl^+#+!%b}+V*vpd8x8?y7j9u|Yhf|$+kjG@#OsnThm`q8 zY6Z_M3MMud2HGOB%D$$?{y_H(!Lt*u?hf*keZzv|Ds@h37}>zE`OC3T{uM4bS!xk%lM%H zEpjULE3u0RSf@C64oBSB8xlLBl+PxKjgS=>X+av`jkkWb8NAn9FUlve1A^+<26#HP zfh1r1Om`-PYlQVx&Z_mchkj^TOPjPibmy2UiB5jlTCh%Do*ch>wnA!)U-+1eCUm$! zT-LDZ40f!?cm*widsSvL^V;v!b2n9UL2$Ck zP>YP&;lf!*6;OpBN?#NbRN1GIIpAISXn&Y3W$F#J&E@k5i*+ zIP|#A$5tn_PVO5oo@CkS>`2AxZ~m!`!J;bQxcC_jmBdq=zawXQOa~ZqM>t$HI9h`k z9WjYwFOtN>@4LcB$cYCAUwz;ucUopy@;53bfK#a5VUCm zO+ZQG`jR1yPY&1u2A1IR*V8tW2Eur0ta(sdO=gQ3S#(%j4*(a?OWIrm`&plK?~nTv zn%PI&rN69zLD}d!!iF)MXR}9nzF+fE)Czc|*7?&;FVr>@gp}UVB{pgcqY2i?Iv`&u zX?DkmiiRN-L$d&BJhckY;qgMyQqQciT5!RLo_t!xWOVLrMR0)qZVwInGfplD#P@|u!9C@iDx~4_j0TS%zUF%(ske?d3^&)g^%X*4;6nEv4 zxr%4a^?VXbPzBGi^o)LMWVI$3x(ebhU+@FQ`0n5?KG%ha687Vixg4hxsh-uDJ>h!f z%Bo4N>g(ZC#%Ji^6L#PyEL$o?8fmRV*o6EV;VY|X4^Fj2Ib@UglF0@0Bw8Ehv>cGX zC?TVsw?_~tK}*QtdT!9TIzIL9PXV!VZx~W$f@n+$!5-@qw~z_b&QslvS>Fw}XQEFl zVP5))xXyJiCqV|HN^5V`?zUnu*ivYmWTnDJnGiSRcY=A@(wXJye<5+jSV&UwSx}pW zDJ$ftq@tnX9yc5K&EWljxa8ArtvK~%^;wP*n4cb2`&7}0W-#;PdoL}{=Pzk^IaNv3 zr$j+fR~D$M7rDwM9_CCygrFj5<*UlAo39UaPl`9sGQ5U~`h+b%JD&4ic<#!DsGFeU zaipN9L_0vi&!n7evtHzwXhLM3956*Ts-zc74B4AX7f&gyoP08Bid=h-m-stuqZ7~%tQ<$KT_x>I-;_&7^k7Pk3szW*aBGmr;lY44#c0&2 z;8~60G*UE-9JHKI$PUGjI&CCZYm9{!BdJoN2zvPHmGo;YnbwlF+H*Ed+f3Gw4R7mM zJ~n*v=f9x89rjbVH5!iRR%-ADiniXuTz&Ke#ZI5%@RsHKnzV+{Nz>99#w6Z8RSiJ++Cz#xtg zf4qXINoza9s6QG0F1v$(F+(P6oK_F19Zk6oKfs#-YdZBJNA{T(<3LE&ww<+yrvq_J zo>xUHuWDR%GJ&M2Iiq1Rl^o3YG|MD*7Me}-LFhy5#b?T+21-V+ zRCbAYAD|e`(kb4nhO8@S*UBq-QKsU844T=5n=j?+Lsr(ERCuC77)p;P|W=x8I+gb$ilREtZqIehV4C1cImG^-tC zvodb|56L>1nb;vtznPNy3)2gZ{GQ(C`nL1hwvtuYC6%P;+9IKJo#bYy?blUGG%y>& z8uqpTIzm2N86~G5Sd%#buA(E{8N=Iwu7Mmv*`yenBqgAUD1fpZC{Y)koqC;h7_Uol zYfUw?m@*}9eS9~e8{)}mO9^g%jcxOB-`vh?`C>HraWeC5QqQuNWS=09 z@rpgHnrYp$`ONpPDTny8jxRIDs}TqeZpEN^!tMAuw@;Mm3d)#J$bzXUb;MJ=QImK$ zzlfj+pALZbkEAkf0@)D@QAEc6$-!R*=wqz2KIlJrTjoLZjpsa{)71;%D0Ir`V`T|7BUkkMSB7qFlZ+EV#aM$vR3%nkl-Ns6Nv6bM%o zTyBQILcWxpaVPE&t2QpMNStg7q}A0B+C%ysHmm;a5}CiOQmH7GUwEZNZzm+NiXjuO z11XMr0+OZs$7Pe_ZSKR9MSd`&T#HNri_x)#U@&r1P_dY%C1^XBc4l9yU(Y5ZruKkM zw4)lbl))T+5Ni*77nHl~aP&!mo9yMF@70(QDi<4p3iw#uTmuXyZ+@NFyr$d%O* zhZizcIW0#3_i07ZBnlA>LpLWxSJ!XRm@x)A3cduXhu-Pm`&2VZ zH=j6Q+>ZFF0`F%}UmPw1jT5HzIG^o#1;k)GEZr_Thcut8fvSmqK^9Wq`@|YfClnK)LP5w!Oy4P>2e?eOlp`+!Tj@EY z*kP)mnhDt8Xj4Ksj$uBaML)#&z~D$E9s_c72{(J~s8AW$IQ&B}jT@yUxYLQ|ne$uw zIO^Cj`4$Z(xFgWrdBxu$^k^5Q-g05;ymxgY`bBmJ0Ut$_X2EREkSUTowv1A2=+ILY zD|VV$8Rnj-1tc0qpgb*X77D*$aFtwA9XJ`=k0U{BOi$Ar6?;POOoBT*yB_s65(DWJ zwf@(1(`*e2@pF&G8Ks#upGU>NVW8Fe7f_o!e%p3G>X>ek3CrR-s1)qe$<6XbI3oW? z)J#otsk~^-r0P^o@LM_%6u}W=M$j0th2PV1b-xI9J3TSXxdoAgfSMHOK*B^-ti#rP zy&%eonyo%UX2zW?&*6kNdudCXKjn^2)35gD3VndOlVo6d=hftZ>fNtJN;g$bbfr;* zu7|bU4!d-m;e`o%STFDGzOXI<369n6rdDG+Nij^Xb46{(W>eQ&>gp~%PO;<#@?IncqCAND zPjv!Z`3;Zzr-UW2PH3dZnU(Gef!+_SvsTb|nVZFCk00Qg)!lh8JwowBA@Wg|G4K`> zUR}GMx+6s9Sj2NpR64VlIaC(=%h#s!o>O?LVv-F}7If~H+9N}W?F3Z;!fK%|az%DB#4uC{39twZU; zfbIbOAIW4uuo=%KUa(5ZEJ@$(r*Ta1O_qrV4PT!yTXd-u zg`cyQrI*PcGy^!Ft;XBuOMC*!6$td1i0@9!3t*irH3CpHrBKetmJSIDBw<@!TqIj? zTmjTl7B9R(Os5Ne_XdGq@(WQre^Djv2}!mE0%sUcFdZe>T~0mioYPwKJFK9?hKEcG zNcGZ*YlC(~NB&`vOvG2!ZN>0*5N{hu&#x*6FiiZ<){eq8c2(N^#6E3ASAQd2DOJ#p z)Qt{X@js6}twu4YmUoRd({}%z+Kk8R>bAm~s+QHMgjFmN;Ls-^; zBAxl`EOy&#Ec$#5Yz1wstz&D@uq14i6usTut4A-Of8x#}*|?n9;df(bUuTsui<}yx zMLwqZ=_{ak9b7!RYl?UNE?NxR@Km;divHtK2m?jbsGvTEbWVvM(b>?EJx5)?!1EM;?7lMHPk~z=aXA`cbQ+xhjj@Xj|W#m-()Y*YB-jy)Z2|key-7nxuy)zxP7Ak;L zV=4C@N=kNF?eI5g0+?rx7Gi_Z5pQ>kv-W5h2GE*B=-iQO3WFY4tyaSQ{;m zQ>U5M&eCm96>~Dbx~@*0g4n2tn8QJZ3OQ+}vNh2__>IPtT;qaG`;{qSLC56WcnIf3 zUsO(%8smy_t<#6D_3BB(dk=;EOqy0VSC>~qp0o1eACan~=K0C|!=4ha!2nD@W@D#3 zKDSKUe&RO^&)#TZc+>XidY)&k%AUgQF_zAb9m`?6Kz#iUzLH*BSwokdaFgqM4EHz> zMhr(sXsbIsy|)Z6lFyR$ut*E7<$)3iUMZ6hP&@UQi{vl|(&0}#xkk#|=@GJuSlEbo zhrP!pSB5_XSC-Y=+D-Q&O5|oei<(@;g2A$MN~vVDzVjEdmkc-e&-Kt3RyXVllE*Q? zEj44oYsn=@=P|#D)?Mi~j%hvkA@t`QpPB=8jV@v8*Sae`GzKZFe`|^<0xm0fm)#5B zMb0YjaxLzSKyi175s$8NVH}61t*72MHB}&&V&)9x-cI3El}_zHU+WCZ(sQy%U)T?R zSkJL-5R`$O!~xv~_${bXR6au6L#BgiP3`Dvm2h@ehzr`zsWgB8+?;);$b2Yl4V9w) z?$WoeVmTmVyX3lx=h-lE}{ge2lUA?TEPc z+j?SXN?Q5-mxg`dXYX8&+T6Z#x^MaNTmMp{xAXh7KYZazo_Ki7*T|7ihrjN1cwZYT ze`IQ)SE#zzy$`*uymu+p%7L8lW-Z{G-925h^3KU9qYM4=e)w|tX2;h*Jw{GzV1WvH zKxFFxHPu9oG_qm(&+-Na+2A^8(NzTLRr3ix^=CiJo9~bhjqbKNB zczgz{2^zeOvI14xrzoBuIW=j+S`mV&^4>PtCwlQ*;Mm_IKWnk;D3?>P8W38HF2K3# zwLUM3@$GeU>zAgvWFf39P_#rLslPwABZjt6B?QggM00##Tlu!hSF3t;X%+tGPw}B9 z+^6x?mBjBnG3VstV3J_fl98V-!@nwZK*&$6$zTS1+WPJwqO2s=9lBr9xZiDm1H%f~HT|pn)lTA&1iQGr&AN_PnX6vcKh9whoQ>4_P2Tpt{ z)zuL^;)Uz;WruBhK!>P}WT<#Wk{|7Pnv87AO_){}z5lOu%8;BWQGGooEAls}uPUILyMacHL(QkjM?uE8nU!-2H%5$)mHOZrH94tSrHIXTLBF!T6>QY=!|Tp+P162_D$l zZ|FEH;vDc(PQHNI;4VD|)ML}*loPDn+-`6eENMqanNE&VCtWzF=>6-*`~Wi|1^)x{ zf#W|mApgIUg&hCItFxZ?`V9{d>KlR}LQTiOz=5bVHT?IlzA#-NJ4iqem~S~rivv?c z1+xo7MF6S=gREX23f>?e*+A&HabIzQ0zhS2qFNH7ufNZrkD*uq7~n|>iv9ncOXT>E zy4U|Um&nY?^j}Qf5DiET<$tk6MiO$O7%3R5*lc8#r9ueRUM<@kYB-Mk!UZl;2@|q( zhFJrQL|Fka!3+~5%s_~N2CFD#YinC;?W(#qb!+lEJ?R!&_0|4qpWRKsU289|T`zC^ z{XZ{UUcX*7e&4@*h>CD<$r2=vnx7vdu=XFbI&Hp9d`j5Q3plgKAK?U_V^oHTdy&~1 z0VN=EBn-qLEgBf7{^}eN{H~4|(IdP`#q@HHYxE8!6pBX{pXRq3@!Yax>c-mHr5pBl zayQ8;Bv`z5iJP;)emX{)@q7wxWD@A8$XH1n=B;h7U8o;tBElAbB%(cI+g`UcUuHos zj+>UPTf7FJ??>(wTG*&0x?Nj6zipnue0VyrD{~9tl)x{9nh`&jK76eFbp5$j%9$~i z`@wu{n(v3#t$yPbin#RbA=Hz4!E}S=td~G5jEe%D!CYj*<+`md(fnHC_^AHPAvxF4 zO_VEpc~&lq<;dY8AtQIsO;VGwxwq~hT(!gvVRRFP21V<={QG>d+1WK-6r@T2lyP|%`^Ur;Pi!9bN0Rr;g^MinMih%k~e$(zn`#22i^DL1*u7$f-0 zX>=8Sg$R65b6^aI2^U9-m#8uhOi689#=dYnmThWn;zFE}P#0V6{N(aws&Y{7mLrsH z*Uj)70)Nzb3@=8Hqstq9lt+NqatDd)GPy;QB1JbXj_OhsL2y^! z7q!#2KbG^c#Wq5gcDf~pwe+HxsdZ_^-zxob`!DF09@cEX)2l%P``7{h_rrDWqBy5$ zA7Al%#&ya{YCad7eOQ9j?0dw%J=n&~7i{@T9$cd%5BVn9nCGBPeamV`FaAWIWC2n_^CzLmA{CvKCPJG*4`|yv#PAB?6Kl{>y9*L8HPdL7N{E> z_c66w(e#MVRcv@p#{N{L&*_B{Cq*f$@@x)={`O!WMlh;12j|V$4Z?_9I9ETUT0oHo z1mWHUvw~UUaANKtS$d(m7vmaie|1~!(V#nqzV~o;5RF+=$mFE7G-G-5wPZ|7PT1^D zzw^A>RTI)ALkv0ZQ{efX67^W5=DPug9vb+jLFE~pdsP2Yeixd@x}UtWhQc4?yY-Wc z$N{01!dVZ~eyI$~O`91-(-dx;K?h{36h6g20tgUo*+%*~>OM>&wg4pqBQ+tdMDEN7z zw@WULY1(xt%gozl$ggV>QWs6!2GYzlt(JIa2s1QkzIHmn^CyC6K2Q3eIPIM?hTqF1QvdQ$A$)k_VXrg_HtLd8#Ka9t3R2h zWxuAxg|#p33l3!-ZB6X<-aPJLih1y!skeU}N@}L87||OjGc+X~D!XkXMlZOiABVdp1ne?v+Csy?mz3Qg+3w3~_0?yzW@E05~<%dioF5UqvLTy`0Vv9 zp6s1VOj?u?TQigqmVed*do&+1UKo1f5j%lZMCk z?+iy>*Vn?Z4w(y2`bK7^AFf^%E6TVFzlAk&H>;v!;Gv8o}|uJwEs4}DAa#Jlf6ftwa`(8ytf#SYkVzhtCt*yR`rT2@ z$+(j^HiQ6Q{u|W|q7R!w5gN-@1VoIkYB64?44L*|X@TQSHO`@ttU0WLic7^kCOFv# zA^BsFhwaf^f#1S>{ryrJAB0XRm_!?WdjQ*NSbK%}gDXy5%kPA5HuatVxMsL9qq;wS z#Xep|<(-kSxq2IZNW&mh$q|G8U8c)a$qeobDNSb1=4)IzF zG(sbsoc4fft2AqxBKui4ba?0+nT2%$89fp%?*QzQp{&3#OO;5T6ua&$7&@3nSrE{? zUzVp{c1#6`^%A?wA2(YxoKa=&q)gjVrL|XyTM9tcYjM>NlPT!bE;mksmZS|T3^8XP49)L=IoOk+3&ZGfH*9S6sYEE+t+*4x`0osQzxRNxL5Ce73sHM zW@RA~v(+dans|K)Mp>zlYA$tY&7!JtmY+N)jFiWQAC#|5MEy2kw>#I%XdlWUw70G| zOf-hZ)i!0Se6rI)WZAlNVfA%ej;ALzhFTyMs}v1&$!Sk~HU9ubIhT|!qTqGS^y}$NrEt;K7J;G!FLcwx9F zvYUMJys=-o-uFCLSRH2EV}dm~Q_lMixE$DKUeZ7D`zS5{-k@#gSHU!EQ57;P8{J@X z5?STa4Hc9rVLkW&ZIXeswbfqvioTYpUH7iRH)`@apk#dTBVBp&Tu2l6GLYs`8E(pL zwC=7nn?gSFHqTGO4W-qMCj_O%1T*tp=l1b;a}|3f=?w<0<+GO;UwVwV;V9HSqDq7s ze`(b_Td=B=ozx>fi~Qan$24XbO-p&4t=tHKY%pMR2uV#VyS{ zg5$bDpxzKWXA(RsUInM$yp29)3>#ZcI4BH!_<3Vvn>vTLoqW!{8fLPsLt2j04VT=; z6DlMq1x1$}6zusFT&_fH(!1&fww1dL8K@NufPnt9CkTI~LTjos zl%){EZB=oot1C?j6y8P^cdThTrzNy1k3i!7MavrYWcE`E7RDWYO$CcEI`6EKLSxxk z<1!;*46r$gZsU=ne8|(%&63P&r-8uWi%^ZmpzC4L92J|7B<@JR^G(SqO;IACb^@vr zupvQa`|A^j_630os<3fr_Hy~3khCcxXlRIJwAJL5W#rojnIu#k1n#_|vF$K9jiZ9; zv|m%0bwM!W`-R8%8Ws|3F>;>?B^L23bM>prrx^;esT(u0UiM+!1r{E5ti)__pkA}V z?7A}C|2Runc8otl6&2vAlT7oBd1rU|k`Ccei;ih(5Ac8q;!cS-4Ow9F5=d@1_Tvg} zcgTm)N2Zt5@l%8JWd(cKf*ZE#n~i8e(F7_By6V#?E*lqup#GFH1Jk8EisPX!=YTOd z$wg{`TS%yaF=i>>l>~ncke73Bk#aZuRRcZ9G-ur)v=w|J2(ZrdWk6(cn-XUK!iZ0R zqlgQCOQmuUm9#V_#=^tPu`nKp39~xj5HfNkDX!!dT9uq>jEmhQuQB>l^LvVKAO$Qx z1WVcRLyf@*WW*wq%Hz&&`g?1FYv$}IP>p?1V(w2kc2|1U7&zy#awk{Qwvm3vQ&o*D+P0wN0OZ;ER`ai5w{@-l`#{W~G_+L2{ zFjH%a^S8ys2LJ#>P@qHqQu`m`$NzC7fQ92<8UYtZ-u}+0%qEG~~4azw$VAaQjBr10VCf}g@&dk8;n9BKT+wC!T~+>$sIu}+Tm&e^?! z^<=UbnAnA>92}f8jci+Jt(RGN-m4$&$2LOk$);<3|nf&7QOS?M}-K{lB10Za495qb+TRZt<73 z7rQvFt-5_qs_xYHj=Q&~1*%mh1Cb>)^0jf`F$)~svFcg{F)-i->{p2m!5EU#Wu^#@ z5oL$C4SDP1?MYD)ek7>Lv?El4!S_Vmk*p$Ig5mb0tnpb9v%;%~Tn)+UqacV6g~<^_ zgOL)1k?X_c5gojL8D3{fOfd)8$QmQ?4E@}$+%rx?G+vpyz1=*xe5M^|P1|Ms5Wgnn ztJ}vtlF~sp4bETviWo>3FI&DjGqJ`RXi_e+1AL z#sJd;e#Ek##USVxw^%=Sb;wGb2Q5ZEE+q(uf3|xCliT8mafq=NH?LSob3H0d+}wQU zPS$GAqe$8Ags)E=v0ZoHJYGknT>t7giPPyGzA}Sv<}SRmoutp>Z#b0t}Zt##^;fVY9{%5x(We1ZpiwWm-C`T*e5F zk(!4k`+L;VKv-eI00dWP);BB5{BY0=a9>XqdV^^~5P?m*)R>ScGu;yN@`nL*qj&Kc z9}XqWbx!-xey6X~24opO4;Cm_9dFo}xcG9hxTqWBj}7etDAjvz_Hqz>F|1gIGAD5> zZN0>wCHX~9FQ`UfI=v{e>A{uR(g2#dFuj#ILNIIhI@rtC+X@Y92=4PCxh{YRVyMK#YH|K| zI&3-A+5OQ;k4*j^_qzP3Ghq8WNv?mjsody+c?EQoZyhj$H1|UrMs@JGp|;p|P1n0d z-lJfxqa_86BrAU|U<;PD9Hvi{|a}}ocup3Wp2XlVyuiWzB(RAMd%N;p|7Q*mx8;%X9M$ZF@ukzE(7eMTMAn8>Z*a9zi?~2 z331qu&fATT{)9v>ljKpH4h$sjdrDMxaH^tZV4i-)V5J95SC00H{Vsz5{s;&Kck}f0 zdbP&1###BJ_?p3;tcw_lTujL%)|fV;`6(LTk+xo%5S;S6m56*O7%d|oGXhgJ2J9Gg zD9C`saMhJTH8DRJ5A=6)D8#gv0f-)L+XAaYXQI{wp7SAGmaKP!rC6D2RG-$XT+=tp zyk8UO!X#7I#PRfXmFXLW0;tI#GRoM9*~+yE+OgiE3zcP zwk6lhg>5-i=kL@%T(vd?kIj_{jCES=F%EBnNq;-#hVJ)VkSM#l+|O68ZO`ikAdAUF zxl^o>PYf|oBGS=<^XNsZY^>)p@Qo4JR!!PN{We4))&p91j)6F^)&sQ>>YuV+`o-CQ zQ`v@GyrdGN5O~3G`@WziqF&OLB!2yM<56sMQsm%-+uaIWite`1gk-Cu#_4ZWrxmZB znx#llT~)zGhg?|I=K|q%Ip4{b!{AD<*y^pN==KBPU4H-Rn`Q7+pmWBsro${a>!0vF zH)F-NjU)hmh;~bcZ7yV6OqQ7LdA$@?m>rr`vvg%jtc3@pcfbT~Q{QC?u*=?o=eS3=awM(O(6J zX69x^Xn`Ty3916+>R&IY%HlNV(0~*aP%EgACW{%1l$Gn&EesT>qas*yJtU#!9|B~Q$pZyb`mqk zhiBBrsMu`bURqb=Sg3aWU>9`@ z|8~;xUkS&>2*#q8gq2J-*4c}baIM$jQ4k_al`B3e_d8K4KXz{oQ84Vjgv~-wU1&Ri zBAs&SSI1{9%!l(D&RXK@y4{XSU84+#+3ZSdTz;gt)}`;_dm-i-8>yOuebSX zn<(puv}&TlAk89f*cP^SVs?NXM!PsnIDg>_{WFfJ542ZAl@X?pP`W#Z-~G!im;8W{J+0uPZ=-SXerH3naGw@x&BOimmsg9tyUNbeR1bT9?qDYF zR8za~*~75Z%M{C^#IJ|5uQk2=$?3RdsVrzKD@Th<7_J}tK06VBWAp$!<8Mih2FR+E zHr_M3nJm@O>N}CJkfpD^0b^FnSls>X;T!dmiFqX0hyKvw-@Lu=JkcT*o0u|!-Ya<4Lq8$IuzMk=i%7$?6n%P0E1CA$J257P%+CM{ zQX@Dv$Cu6!mg3hyYaxfd>N1EEATO%QDeOc-=0KhLmhG1ddsyje6%8pZOuO~Bp`+R= zR(kKH#@-iZ#dG$~|9~;XKY-O|DZ~Z5++)=pE8o?J%|gxg*#?1?Fdwm~NP5=hbiUl~Q=%oY z9XyUPnaoB+nFFsyT4jXB*JZD{AEq266{gY}(K0W_L(SZ*ft&;&FpgNx6}}aT9wE$- zn(aXK_?+xT^b=epxB<7=&sf`E?S2c?F<-MPDhO>?`E97gu`WHBeH}?9a@FJ+5wy5& zoa3%!tMAz7i|S=4q~^r^+4$f%@Vn5yjTP4!%SGqp)@-M9&kK=Djg3f5cMp3<%;H~T4yR%XR= z(B34({v}w+&z@2|qQ~>|wS_cFU1qlGCA;$~3AEzsRu7@&+h8sb&)YuIR3AC@RX%*` zyqxhoTMYctI_tF2Ff*7oGQXx3pP8DFK^|d#+#-T9pp@9)e(~)i1LZO5C|BrQl=@MP z_quh5E~&VMMDR0)aEKb2)x`NEP#MGc01Kc&#;|=;0L(z9t3O7W%$dJ2=u;+^-ESkR|d^yKDN^aRP)`cg35*D{af zVsGSagkU!ox4f)_$BP_*9)>q~cORSc=HHmayAhj{!|tJEE!rJRNYn;kYZ!W4?OSX} za$tIjAZ zXvi8`ZmfqW$R{gDsXCm>raY-O-ZwYDnB z)xBD@bNN|i*xikQNk!V;+s>xZhy^t>f` zxpqdCY)MnOa-cU?ibebdY_eeO^b*EEQ5i_d1iy*Z(;2eY>g4jhaS(UN#8UCtQ?dd@ zsUcD;vAk6?CQ-8jNs<+eBPC;EA&etO2{Wb(oro9~6N-XnHz8+AGlOs?Sv1W2reA^; zo1J9%W}EGDri|8#FoujMrAlR~;^ByK${+YAV!ddd-$npMb?xfRs6o?%s0NdDM{APS zz^HNEp(Oen^~Ba>Eoe!G<>^q9yGGpCc@}HTe9z-}lY^Qb23^?OfByk|V>{!$<3Djf zwt%$kgzRCXdr;o;=oH)x6po433tUM>yOI7xxy`uj`;gvN*>emnfb~*BSu7qVCZGVM z(0npoF{U@UF3uSh!<*Z4NGSkBu{9SwUYwkJ+_~ z*`Xbx9-^QNMO8;C0DRG=P9b9dKC)%wk%yJM_N$kw+tDzsPHbA@vL=p#^PWX=Uxq&M zT)aWxW1tL=@=9?oIMa_Hz{94Vkln`jAh}+sUbN}$D<@_+!-?V-<#OC0nL+h}llXML zqBH57ijS3OVllIzIykpoh{K z^$CxiATK#j&v}>sv`17(E$U%9X%&f2Xh3t0ph=4pxg0eH(ij3E6{*)+q^tnQz}^9q zAF7~`aVz&ES6RcMtAnCR%!&dQ@V&$>(^cUAD@&H9_tDPTWWbA;j zgW_~f6rWY>Q;2F_Qa{~09H3Mg$UYXy^)Mz4; z857!4JfJF^vzPDP?d~53-o^wEDQ^dba*uH;E*Pg5-5?dVNu_hO@=m(!9wvX zW3f8GR+ojEZ~M4w@mVrq0BBJWop7D1pB!}L5Wi}|#wYlq;|9#L*?0Ox z@(pw-_YglXsC>*sEg!W26-^*~R2GI+Az?-@G^iK>SU2|>&ThNh#YIm5odIW)G>R7l zq;MeVc3pxV=ZLUp1O)Jt1-%2(Uc=X?L&r=Z2=|U6-i7=_@`cZWc5xkvdPkqe2pLa> zf{6{`^(%&T-d7%-yLEH6D{iiBZLYwO7HjW7diY#l&bR9G&xXj2ZqQ!RCr|(~gJnqU z9g|gk$z^~!pD$#~NHDhy8WV_ZIiX~lGzy>JWE#=x8TU~sr9~`y9(#stu9_;zO0@+B z(n5w#W48AIy;NpU{hJ1;qsqy7l=qsL{bxz1p5@ZFPO+}-xOokdzt+lfneGXm*k^Xi z9e*M!Xc%KD32T-W)w2lq!VRN_#HPq-55JKVu72PYcmwuwo(34{@+5*V8Hfq5@c|Kq zrvyNt-VJCEg}&kV_<^WvkmbI;e0! z=arQ<`en}~6Z4kvhiZDU6p*lLJyEY{*KqaK&<;O>c2y|qKBBKKf$bII%O5&t+6N_< zm0o_0Ai&q{8!~8&r2m1SnlSiV@cAc2|`>2+mFi0j`82 zWt=lba;4~uYkhkI8tB@z|5b}V7sX+VhBxWMO9pHZzH5e&JVn#^k{kpSI&aCG9;*Mr ze0>g{M;%-r0tQuf>9WXq=NY8KZXiD^NcT*JFz-yL-q4l?s8D{y`Cv#otV9JYJgj0M z$P#+JFlob0JRUz z(uhs(-q+)7|3ocR)$TdPsa$NPALhh;FAz^7`XPPXaI~N4!L28?(*~;y2{GAjUY@-^ zJ1dQtv#q=z-LZCL8dFt*U99dtBC!j=AseFO>zWT=6)b!?)YM5!tFb!D3a)OT=n2Gk zKVTSlUquuuXt*~&{W4;7zq+XDqRIMKB0)zU_ggNaR>vWA7wU7&H&KTUbSM2Z>j!S{z2efw)4oCSfx= zj4^TPO3gW#)od0&52NM+Z2)xV53eNeId=3pAUxMpOsLP>hf^HD;oA$4K)|}9B6_C9 zq^(7zCA$J({z*SjzXO(z=2_D1V%0*=ZU`||%Z7e<+xVZvY(oa)AYmy*-&Eom&)*Tj z8T5kY2Ouhwkd{NG>|*#>aR^nKl#kV{WK%@n(EPuGH-_J)stzs}6{sHI4Ko_jY9ALcBb@(8?U);rDL0hD5N z_^ud~STwFRC7kQ2n0+=bc_ze#>zA%5UJ)A|fqgLY6qd8XL|eNleUentq){{|FH0<2N39c^@69?Z-(9!7I%eN`ZnB+fgX6~`B7_mkHriaQ ztfkE_k8O@Gle0?+2UpS?7ksF&g7NnxiVZL}B;XUR`F0vzSmP_&_cx-sm$`R@gDiOq;>ACK0t3lN@mvs6Y-L%jrP&VG82?JR z28oE$YFSQDwHTSAS#2$h4;x5&PMkI~?QNALGsm^fSxg)$ILr0RS8O?Zc;1nWEvtv=O(heQY&a=`%o;i!oP_3D>W^mXyXE4T4tO|9eJ z-20%l{z_%nQNJ8%o_Bzp-)kYnYMr&-TYzmzo}#vTt+j`|gCaylDi8*#Pj=5$7pWpM z44)R}PT)TcHzrIGCt{4S9v~zk=G_1w)X#h+CDKN0E*5w6`=fg%Y7uuSqS11x!$HMY zoL;^rM>)=8Ovh1j8RFY)KYTs?cYaS7?D5rUz*!s=xB#8T$$V8(mK@MLdh~ek^ z$}ChpBPhYgh=yV#Qx-HV!EagiJr}MhW%#G>g1>JeRmxVB$D=VC?R!{iJB+@cfi$No zNKj@&K~2JfgRQs|6&TOxO(xzUv`M(CJ!u>UopHmz^Kjn36M*T5}l z$ufSd?0SDed5aRW5@D*#0ik=@B^Kv;FD|cO2bb|E8+FfREeyW}Pt~2o2Y&7jr>rLl z>WHu{Nu;b{NW-IVrc1eQx+!9$UxogJ5&9r|%Aatc}!FW4&pS zk6*yE{`55glG3@l5`3i$wjQi!`1j*^%yy&|gBgaU)paGLmOOb*TCjG?<#tCyf6|`= zmfEEirew-hPS3x><-x8yIlJ4`?;x_ZZKT|D(X<7PGwN2Wa*X!WmHnEU6(t-PR+{-s z0ftHRbGi1(xhH6}xu;Gyg(+OrLnS5_jI#{~eAO#l9G??RO9TCmeVDO%)4cpsHVy%T z?eW6gRuJs5+Az}l(yJ5HVA2t+`wYrgQ30PHz5!Vs&04bl9oX+*?dDea0{6pf&5gN% zDloP`9uhUEzQWwzJUwY)IlSO-LxmCGftG0Bm}6=211O{k@UOM`)3jz8YjZH4qvr<)!J|tx_nUBf}<4f}EBWgMGA&S?~mp~p5fTdYJ9LYG7t@Y(HT6P1) z%7|Z9vGq1`r<@4S8;_%lx)*yTk&RQ}3pglJ(y^)BCxnN`Czn8!=Cb7_qYG&3gzuFB z`#YTyF%_^Bg94krXQKEe-BOK}>Sfu+^04{FCrEY+cWNHT=vRk!3T_85j+Ggo*V>q# zYhj`DZ;n~@EK#!q`(Qjdt4SLwgRtnJXSrV#-On2(TFsS2^1k-l)d_>rQYIvv!deMi zBZiO~!4q;TDn)ACFh{4BDOsXB{5Fpm5MuEAlg8L809^Qpx&GqgC-4*@L<7vz;STs5 z>*mt3xb(5nFfh^dw%%e70Y~R8#neWQnyq_|9}!?L48ILM?w_lyO@3jT zw$4$MH|?~bgWtOR$gqbL;8OrTf(-ZqznlmnBXhA)ycp#; zZPry(IhR&>F-IyUuzz`_1m#3w)d9U9skwuyvL8}VEY|>6eN&#ThhU3;G|Yy20A3s_ zPidPcD~zJNye+`^TQke**)V{!bXFPp=GbY#E`ywp$1Q zfP@D0FCO2F|3H|^9`+`5a)y>l&Ng(i_^eEHq85%$&iKr19Dh&$?^GrB|JdCb*0ixh zl0f|S?JexJDO9oV?ah`a#y=dxrQ?7Y9jM}SzamhFay90ndVP6Oc8TM0(RX4Z_TXik=_FraT*O)rX$cME}4Qm5G#o`T;6DuKK$W{`M04oM|4C#uiG zPEv(HKx~i$K>=|gBB`*3pR9@>Bd7tIAW@btU>y<(m<5@VjG8&J8~iLNWesH0l(;r) z_^8U?wZaJjj^YA>!(JDyvM`8M0Bl3*tf=VDNTMkqiVmw1;!rojr5-Q~n3v=P^a!Tq zRc2ij1}TsF5jZeXEJD9Foy0JJVGg61mapeemi!1LdpFXLZGG5>hr;SCFoYkNd`m9Q z(gk1>q#{A=KJEqEC=#w2nU0V7!T(dXC$EkMn=AoFeM_Ax1VRJBQYM@@16_hoCV`E1 z%8b1$+#s(AIu@{MfyXE)mOzO8c)Pdj%&Rq@kFOB98l;q-N*13$mU?&}?H_NJYy3bR z@0=@=7`J|Rx9iP-*ITZ(y!(0RY_H&_0XxGRM|(l$;hr7VxOaEQr%74GwrTC8uKpar z%S?UShYi%sTpyN7Loh>GdH?YN*9P16^$b{*y``-K>&8oQfs4PAEa#auods?%9m=)# zew^b0u<`8MD8R>$J+`AiDABD=Ls3}&)#S*aqq7Xhw}QtfY0;J3F;aFbK6SSik=%C0 zxI0Y7O*EyW`{05bF%x$;=SjXZlEE7d)l2h<$CQU_#!JR_9})T@JsKo7cQw7M_Yn2A z3&LAEh)Hw49=T77@rqa~Lh!s1`ubB!;1#XV8pENt+wR|>fXS+dA;F$znX*rF`K^*Zs|YF zIP-F%RiFCD`B;j{xiu+n9ut~+#os0kT#qU*JfF>_he&SnWYvUtE6^S!{#vwF>1|cj z{AS9=PQzT1h1Y28=!tP|gZ=f|mKUvBRQX1Ng2k!2Qc~cMqGW0AA~GGB;(KZ=62$h| z{~^i60izymi;lu1GP#ooj(SBe0%H-58_Y*(p@HfX=rF~m4IC?3*PoTer&cwy4%xj3 z&f(6jx$^mR6-IU=oA>?xIehVUGA|ucwEA>3y=*RUXxBrl_H@#?KFXn&GkNCN{OWmY z&iK>Fi`}IueLn2$>S52?51L-ngKJoNaZ&lsv;`hvE^@E19*wqWrJvG)=Qusih3w~e z8=F}qBW}~QH3x@FGfGS$DfWag8>j3T#5Q-w z$*6-<%>Ot0f_YG~fKFMm>tH{|j0vYNb7xmY2zIt^3~kzg(6!oTU>N(@y0->j@-!b= z>o*SCBm~UXHc{l_nM#bV^oc)^+X~fV#qg`Hmsr{t!&VD-6c`Uz~6)k*6($Pww!tK!sI-t6gvekW>__RG*@m$=Sui4a!Lx>5H(QTGk89Kz+|d71tFAB2QPF+gPyl7Ns~`GbBX z;ELk=NTkF?_QF>(p&;aU3xK^eC8sHg1g(0&oh0O+yFYz6Ji(E9$(3i3(3C)*Bc@_`F{ zukniKya|xG^3o^2U$7HI^|_7f0ngdq*bKtoc)>q?;t9`|M{uc5!*;QN=n~&UwVMH~ z4H%@^?h=`aK_&sMR;&UAfar$82P<0Tm;w`EWQEKU3@F;AqENEZRYh!ots`|Xl8!Ck z25!rg3|N8_GK<^E?ef^U7j(Ui3zMhkf_K~jCOGLNK;D24TxAL#dudI2NoatRPpB|1 zq%w!Px9cyTOrT+2r(tH{b5PDTT%%VZ5#Gb52!u^JpkId)+3^ewHNvYSqu4c+_K;2$ zqw~Q<@Hdwx2h5Qh1lc`QIGGROE@aL}KuCZT_JA}|$zWv2kh9pu#x0cq5VimX#Hx=c zt&`-)1X+Vdw#w&rhYCwrfI=X`=Y%yRa#Hb!3{et6N*C;3BR{3?H!1u33Xrx0LgkwF zNJfy78jcGh7@_zOi^^rrDTb>QU%}XFD|64wN034y%_3>b#QD%%V;VATN$w>Aci7)h zJKqYMo*gT&1ic1xpIQJRox;#82`vUp<;ve6A&GqP6DEl8I4>SzaV)VrI%eXJTEr=p z5)BcjKw6I@ov;fOB2NPZI1xt|QAgL56e=M;<`p#8O%*j=pg`(&f3ChYKIr8YU1ca7 zG^BT#Wg`yA@{8{v!B<^EK|sV*`va)ww-K%ekPudK1)tz*ko*vua}M^gb*)8$ z)#JbxS}&_7M1o_H_wH6G`W85esn{hKFbhSs?fXwJs?Z)&rY2w3-g-!IySuWJG16YG zX1B7LEI|*_tqW-ol?t#Xef6AH1%-Br-hfFlDfNbxb{UfGzixU$S)Sq4e%)rcuV7Zt zP498{xa_Cf6C|ZKW%iJ#;XImi%(PwmCTzKuuV~d>drF$QGK=F_X{Z<;xB0!O7oD;b zH*PPMkj%NacGQWA->Nx_?gn6CjC;?)nyxKW4$uJLfCump2Gax70n`S>JP)?*hrz{dU+@!Ohhu~{%Vvx7GfG6wT% zlQ`HL)Cs>04DG3%ncw*}2yUL{^G`&&dNiLjG}3T19lnBRl_FgwAy)-|Y0#D$ zB#E8Ho~OBk+un{AhL2PRFaDO+^V7;6tFRCp4yU7!9gVFJ^YfgcU(advkWKJ!-kLSE z*!T1N!J1z^7MMTaft}1D|H3iY@aggG3@xF!x#|8l5l~k&F{M+qvvbC0_PQupI z4*$Q{!r!B?7Pk>AgORZz13LqU0RxLEJ;z^Ny%C2I8{^;LA2vfH118@8{~bDXN*10b zP#o-ZYFZ3`OEc>HcRYjbKh_;+X1M4E9gs)v9+tXkU1+Mkq%5L3TFt4#@d<}Uu;8~t zg9R2u(2|Ct=w0eGFpG}(#545~b^VKdwUVB$>}r5A_= z8I7~6;w2g+6OCi0;;A!;IMn;1O7crK`#0C#%R5JXT2NdzVWVeE!Z1 zZ7t6XbF0l9{z$Tf#4}h1>dD*M>y>Eaqdue``@f&2le2-Nv%8~-DHJO+3kwSr35kfD HDAfM~Cn74D literal 0 HcmV?d00001 diff --git a/os_exercises/ch6_exercises_solutions.rmd b/os_exercises/ch6_exercises_solutions.rmd new file mode 100644 index 0000000..0f7b003 --- /dev/null +++ b/os_exercises/ch6_exercises_solutions.rmd @@ -0,0 +1,196 @@ +--- +title: "Chapter 6 Textbook exercises" +subtitle: "Solutions to even-numbered questions \nStatistics and statistical programming \nNorthwestern University \nMTS + 525" +author: "Aaron Shaw" +date: "October 22, 2020" +output: + html_document: + toc: yes + toc_depth: 3 + toc_float: + collapsed: false + smooth_scroll: true + theme: readable + pdf_document: + toc: no + toc_depth: '3' + latex_engine: xelatex +header-includes: + - \newcommand{\lt}{<} + - \newcommand{\gt}{>} + - \renewcommand{\leq}{≤} + - \usepackage{lmodern} +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) + +``` + + + +All exercises taken from the *OpenIntro Statistics* textbook, $4^{th}$ edition, Chapter 6. + + +# 6.10 Marijuana legalization, Part I + +(a) It is a sample statistic (the sample mean), because it comes from a sample. The population parameter (the population mean) is unknown in this case, but can be estimated from the sample statistic. + +(b) As given in the textbook, confidence intervals for proportions are equal to: + +$$\hat{p} \pm z^* \sqrt{ \frac{\hat{p}\times(1-\hat{p})}{n}}$$ + +Where we calculate $z^*$ from the Z distribution table. For a 95% confidence interval, $z^* = 1.96$, so we can plug in the values $\hat{p}$ and $n$ given in the problem and calculate the interval like this: +```{r} +lower = .61 - 1.96 * sqrt(.61 * .39 / 1578) +upper = .61 + 1.96 * sqrt(.61 * .39 / 1578) + +ci = c(lower, upper) +print(ci) +``` + +This means that we are 95% confident that the true proportion of Americans who support legalizing marijuana is between ~58.6% and ~63.4%. + +(c) We should believe that the distribution of the sample proportion would be approximately normal because we have a large enough sample (collected randomly) in which enough responses are drawn from each potential outcome to assume (1) that the observations are independent and (2) that the distribution of the sample proportion is approximately normal. + +(d) Yes, the statement is justified, since our confidence interval is entirely above 50%. + +# 6.16 Marijuana legalization, Part II + +We can use the point estimate of the poll to estimate how large a sample we would need to have a confidence interval of a given width. + +In this case, we want the margin or error to be $2\%$. Using the same formula from above, this translates to: +$$1.96 \times \sqrt{\frac{.61 \times .39}{n}} \leq .02$$ + +Rearrange to solve for $n$: + +$$\begin{array}{c c c} +\sqrt{\frac{.61 \times .39}{n}} & \leq & \frac{.02}{1.96}\\ \\ +\frac{.61 \times .39}{n} & \leq & \left(\frac{.02}{1.96}\right)^2\\ \\ +\frac{(.61 \times .39)}{\left(\frac{.02}{1.96}\right)^2} & \leq & n +\end{array}$$ + +Let R solve this: +```{r} +(.61 * .39)/(.02/1.96)^2 +``` +So, we need a sample of at least 2,285 people (since we can't survey fractions of a person). + +# 6.22 Sleepless on the west coast + +Before we march ahead and plug numbers into formulas, it's probably good to review that the conditions for calculating a valid confidence interval for a difference of proportions are met. Those conditions (and the corresponding situation here) are: + +1. *Indepdendence*: Both samples are random and less than $10\%$ of the total population in the case of each state. The observations within each state are therefore likely independent. In addition, the two samples are independent of each other (the individuals sampled in Oregon do not (likely) have any dependence on the individuals sampled in California). + +2. *Success-failure*: The number of "successes" in each state is greater than 10 (you can multiply the respective sample sizes by the proportions in the "success" and "failure" outcomes to calculate this directly). + +With that settled, we can move on to the calculation. The first equation here is the formula for a confidence interval for a difference of proportions. Note that the subscripts $CA$ and $OR$ indicate parameters for the observed proportions ($\hat{p}$) reporting sleep deprivation from each of the two states. + +$$\begin{array}{l} +\hat{p}_{CA}-\hat{p}_{OR} ~\pm~ z^*\sqrt{\frac{\hat{p}_{CA}(1-\hat{p}_{CA})}{n_{CA}} + \frac{\hat{p}_{OR}(1-\hat{p}_{OR})}{n_{OR}}} +\end{array}$$ +Plug values in and recall that $z^*=1.96$ for a $95\%$ confidence interval: +$$\begin{array}{l} +0.8-0.088 ~\pm~ 1.96\sqrt{\frac{0.08 \times 0.92}{11545} + \frac{0.088 \times 0.912}{4691}} +\end{array}$$ + +Let's let R take it from there: +```{r 6.22 CI} +var.ca <- (0.08*0.92 ) / 11545 +var.or <- (0.088*0.912) / 4691 +se.diff <- 1.96 * sqrt(var.or + var.ca) +upper <- 0.08-0.088 + se.diff +lower <- 0.08-0.088 - se.diff +print(c(lower, upper)) +``` + +The data suggests that the 95% confidence interval for the difference between the proportion of California residents and Oregon residents reporting sleep deprivation is between $-1.75\%$ and $0.1\%$. In other words, we can be 95% confident that the true difference between the two proportions falls within that range. + +# 6.30 Apples, doctors, and informal experiments on children + +**tl;dr answer**: No. Constructing the test implied by the question is not possible without violating the assumptions that define the estimation procedure, and thereby invalidating the estimate. + +**longer answer**: The question the teacher wants to answer is whether there has been a meaningful change in a proportion across two data collection points (the students pre- and post-class). While the tools we have learned could allow you to answer that question for *two independent groups*, the responses are not independent in this case because they come from the same students. You could go ahead and calculate a statistical test for difference in pooled proportions (after all, it's just plugging values into an equation!) and explain how the data violates a core assumption of the test. However, since the dependence between observations violates that core assumption, the baseline expectations necessary to construct the null distribution against which the observed test statistic can be evaluated are not met. The results of the hypothesis test under these conditions may or may not mean what you might expect (the test has nothing to say about that). + +# 6.40 Website experiment + +(a) The question gives us the total sample size and the proportions cross-tabulated for treatment condition (position) and outcome (download or not). I'll use R to work out the answers here. + +```{r} +props <- data.frame( + "position" = c("pos1", "pos2", "pos3"), + "download" = c(.138, .146, .121), + "no_download" = c(.183, .185, .227) +) +props +``` + +Now multiply those values by the sample size to get the counts: + +```{r} +counts <- data.frame( + "position" = props$position, + "download" = round(props$download*701, 0), + "no_download" = round(props$no_download*701, 0) +) + +counts +``` + +(b) This set up is leading towards a $\chi^2$ test for goodness of fit to evaluate balance in a one-way table (revisit the section of the chapter dealing with this test for more details). We can construct and conduct the test using the textbook's (slightly cumbersome, but delightfully thorough and transparent) "prepare-check-calculate-conclude" algorithm for hypothesis testing. Let's walk through that: + +**Prepare**: The first thing to consider is the actual values the question is actually asking us to compare: the total number of study participants in each condition. We can do that using the table from part (a) above: +```{r} +counts$total <- counts$download + counts$no_download +counts$total +``` +So the idea here is to figure out whether these counts are less balanced than might be expected. (And this is maybe a good time to point out that you might eyeball these values and notice that they're all pretty close together.) + +Here are the hypotheses stated more formally: + $H_0$: The chance of a site visitor being in any of the three groups is equal. + $H_A$: The chance of a site visitor being in one group or another is not equal. + +**Check**: Now we can check the assumptions for the test. If $H_0$ were true, we might expect $1/3$ of the 701 visitors (233.67 visitors) to be in each group. This expected (and observed) count is greater than 5 for all three groups, satisfying the *sample size /distribution condition*. Because the visitors were assigned into the groups randomly and only appear in their respective group once, the *indepdendence condition* is also satisfied. That's both of the conditions for this test, so we can go ahead and conduct it. + +**Calculate**: For a $\chi^2$ test, we need to calculate a test statistic as well as the number of degrees of freedom. Here we go, in that order. + +First up, let's set up the test statistic given some number of cells ($k$) in the one-way table: +$$\begin{array}{l} +~\chi^2 = \sum\limits_{n=1}^{k} \frac{(Observed_k-Expected_k)^2}{Expected_k}\\\\ +\phantom{~\chi^2} = \frac{(225-233.67)^2}{233.67} + \frac{(232-233.67)^2}{233.67} + \frac{(244-233.67)^2}{233.67}\\\\ +\phantom{~\chi^2} = 0.79\\ +\end{array}$$ +Now the degrees of freedom: +$$df = k-1 = 2$$ +You can look up the results in the tables at the end of the book or calculate it in R using the `pchisq()` function. Note that the `pchisq()` function returns "lower tail" area values from the $\chi^2$ distribution. However, for these tests, we usually want the corresponding "upper tail" area, which can be found by subtracting the results of a call to `pchisq()` from 1. + +```{r} +1-pchisq(.79, df=2) +``` + +**Conclude**: Because this p-value is *larger* than 0.05, we cannot reject $H_0$. That is, we do not find evidence that randomization of site visitors to the groups is imbalanced. + +(c) I said you did *not* need to do this one, but I'll walk through the setup and solution anyway because it's useful to have an example. We're doing a $\chi^2$ test again, but this time for independence in a two-way table. Because the underlying setup is pretty similar, my solution here is a bit more concise. + +**Prepare**: Create the null and alternative hypotheses (in words here, but we could do this in notation too). +$H_0$: No difference in download rate across the experiment groups. +$H_A$: Some difference in download rate across the groups. + +**Check**: Each visitor was randomly assigned to a group and only counted once in the table, so the observations are independent. The expected counts can also be computed by following the procedure described on p.241 of the textbook to get the expected counts under $H_0$. Those expected counts in this case are (reading down the first column then down the second): 91.2, 94.0, 98.9, 133.8, 138.0, 145.2. All of these expected counts are at least 5 (which, let's be honest, you might have been able to infer/guess just by looking at the observed counts). Therefore we can use the $\chi^2$ test. + +**Calculate**: the test statistic and corresponding degrees of freedom. For the test statistic + +$$\begin{array}{l} +~\chi^2 = \sum\limits_{n=1}^{k} \frac{(Observed_k-Expected_k)^2}{Expected_k}\\\\ +\phantom{~\chi^2} = \frac{(97-91.2)^2}{91.2} +~ ... ~+\frac{(159-145.2)^2}{145.2}\\\\ +\phantom{~\chi^2} = 5.04\\\\ +df = 3-1 = 2 +\end{array}$$ + +Once again, I'll let R calculate the p-value: +```{r} +1-pchisq(5.04, 2) +``` + +**Conclude**: The p-value is (just a little bit!) greater than 0.05, so assuming a typical hypothesis testing framework, we would be unable to reject $H_0$ that there is no difference in the download rates. In other words, we do not find compelling evidence that the position of the link led to any difference in download rates. That said, given that the p-value is quite close to the conventional threshold, you might also note that it's possible that there's a small effect that our study design was insufficiently sensitive to detect. -- 2.39.5