From e3ddf944e95a350a79e1604bf73e4e90005ad9ff Mon Sep 17 00:00:00 2001 From: aaronshaw Date: Wed, 28 Oct 2020 12:47:50 -0500 Subject: [PATCH 1/1] ch7 exercise solutions --- os_exercises/ch7_exercises_solutions.html | 1668 +++++++++++++++++++++ os_exercises/ch7_exercises_solutions.pdf | Bin 0 -> 54066 bytes os_exercises/ch7_exercises_solutions.rmd | 97 ++ 3 files changed, 1765 insertions(+) create mode 100644 os_exercises/ch7_exercises_solutions.html create mode 100644 os_exercises/ch7_exercises_solutions.pdf create mode 100644 os_exercises/ch7_exercises_solutions.rmd diff --git a/os_exercises/ch7_exercises_solutions.html b/os_exercises/ch7_exercises_solutions.html new file mode 100644 index 0000000..63c4cc3 --- /dev/null +++ b/os_exercises/ch7_exercises_solutions.html @@ -0,0 +1,1668 @@ + + + + + + + + + + + + + + + +Chapter 7 Textbook exercises + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+
+ +
+ + + + + + + +

All exercises taken from the OpenIntro Statistics textbook, \(4^{th}\) edition, Chapter 7.

+
+

7.12 Lead exposure

+
    +
  1. The hypotheses can be written: \[H_0~:~ \mu = 35\] \[H_A~:~ \mu \neq 35\]

  2. +
  3. The conditions we need to evaluate are independence of observations and normality of the distribution. More about each below:
    +Indepdendence: If the 52 officers represent a random sample, then independence would be satisfied. Unfortunately, we cannot check this and the assumption seems like a bit of a stretch.
    +Normality: There’s no plot or summary information about the distribution, so it’s hard to check whether this condition holds or not either. That said, with \(n~\geq~30\) the distribution would need to be quite skewed for the t-test procedure to be biased or invalid, so this is probably not all that crucial/concerning.

  4. +
  5. The test statistic, degrees of freedom, and p-value can be calculated from the information provided: \[T~=~ \frac{124.32-35}{\frac{37.74}{\sqrt{52}}}~\approx~17.07 \] \[df~=~ 52 - 1~=~51\] \[p = 2~\times~P(T_{51} >17.07) <0.001\] With the test statistic and the degrees of freedom, we could do that last bit in R:

  6. +
+
pt(17.07, 51, lower.tail=FALSE)
+
## [1] 4.914893e-23
+

That’s quite a small p-value! The hypothesis test suggests that we can reject \(H_0\). Given that the observed difference of means (\(124.32-35=89.32\)) is large relative to the range and standard deviation of the distribution for the officers (and presumably even larger in reference to the distribution of the suburbanites or the pooled distribution of both groups), the data provides compelling evidence that the police officers have a higher lead concentration in their blood than the suburbanites. Further inferences, such as whether or not this difference can be attributed to the effect of the additional exposure experienced by the officers, would require additional data and some way to disentangle the causal effects of traffic enforcement from any other observed or unobserved differences between the officers and the suburbanites.

+
+
+

7.24 Diamonds, Part I

+

We want to test the following hypotheses: \[H_0~:~\mu_{0.99}=\mu_{1}\] \[H_A~:~\mu_{0.99}\neq\mu_{1}\] To do so, we can use a two-sample t-test to compare the two sample means. The conditions we’d like to satisfy are independence and normality. Re: independence, the samples are random and not exhaustive of the populations (presumably less than 10% of all the diamonds of each carat rating on earth), so we should be good to go. Re: normality, visual inspection of the histograms presented in the textbook suggests that what skew may be present in either distribution is not extreme.

+

Given that the conditions are met, here’s how you could construct the test statistic \(T\):

+

\[T~=~\frac{Point~estimate~-~Null}{Standard~error_{difference}}\]

+

Plugging in formulas from the textbook this looks like:

+

\[T~=~ \frac{(\overline{x}_1-\overline{x}_2)-(0)}{\sqrt{\frac{s^2_1}{n_1}+\frac{s^2_2}{n_2}}}\] Now, plug in values from the table provided in the question text:

+

\[T~=~ \frac{(44.51-56.81)-(0)}{\sqrt{\frac{13.32^2}{23}+\frac{16.13^2}{23}}}\] Work that out and you should have \(T~=~-2.82\). The degrees of freedom are estimated by the smaller of \(n_1-1\) or \(n_2-1\) (which are equal in this case), so \(df~=~22\). Consulting the table of T-statistics from the back of the book, we find:
+\[p_{value}=P(T_{22} >2.82) \approx 0.01\] Or, you might calculate that in R:

+
pt(-2.82, 22) ## lower.tail == TRUE since t* is negative
+
## [1] 0.004985866
+

Assuming we’re okay with a false positive rate of \(p≤0.05\), this provides support for the alternative hypothesis and we can reject the null of no difference between the average standardized prices of 0.99 and 1 carat diamonds.

+
+
+

7.26 Diamonds, Part II

+

To construct the confidence interval for the difference of means, I need to calculate the following:

+

\[(\overline{x_1}-\overline{x_2})~\pm~t^*_{df}\sqrt{\frac{s^2_1}{n_1}+\frac{s^2_2}{n_2}}\] All of this is available from the table except the critical value \(t^*_{df}\). To find that, I can either use the table in the textbook (and find that it is about 2.07) or calculate it directly in R using the qt() function. The degrees of freedom are approximated by the smaller value \(n-1\) from either sample (in this case, both yield the same number: 22).

+
t.star <- qt(0.025, df=22, lower.tail=FALSE)
+
+diff.means <- 56.81-44.51
+se <- sqrt( ((16.13^2)/23) + ((13.32^2)/23) )
+
+diff.means - (t.star*se) ## lower
+
## [1] 3.254
+
diff.means + (t.star*se) ## upper
+
## [1] 21.346
+

In words, I am 95% confident that the average difference between the standardized prices of 1 carat diamond and a 0.99 carat diamond falls between $3.27 and $21.33 (the 1 carat diamond costs more).

+
+ + + +
+
+ +
+ + + + + + + + + + + + + + + + diff --git a/os_exercises/ch7_exercises_solutions.pdf b/os_exercises/ch7_exercises_solutions.pdf new file mode 100644 index 0000000000000000000000000000000000000000..7238fedc327df9c6307ff4709300ff82e0aee77c GIT binary patch literal 54066 zcmb5VQ;;a#wyj&3W!tuG+qP}nwr$%r%eHOXwq0lKi1V=4*(+}R_ia36LNkozR`+EYLUA9Jxw^{4)fnU$hH{hOcNWWgc_jjMq&DQI` zz3J1$CNg)Mt(&IV3d3vH$k7v=w!5{zzKa{V&8}=U(_t(9Rya`Jt#=i>a#D9V

Mfsdjrs+mG%`I9l+9l>&|fW&CRFL9@b;(gK=#6?sRFR?}|kYr6)n2Vzk?C#Ct z(1WQTM}bYp^arC@FEcT&)dm~&`S2AiRdTSD^wAYyyzche^fKg+PP-p_SL0XoD|Rad ztlBy4!L5otlRBg1VVbq+iX?rcl3>7Z!9e`2Jf7%dL)9ycOcqis1z1=|uWT3-2eP5# z6#QE|fqd-=1e+6TeT zAWEYc(5nMCMM9P> zACCPAldIr!cPLhc;QjAfd!Opdm3PTQd7)4jsI6IJ{f$XuMud1{eM$UJC)SR`tR;=6 zTtLjJ7vx(uWK%28Xn7;~D0qMn+c7z`XAq`Xu~CzZD2NuPq(g9v@fOv?!{>+h{x0ku zrDaJJzXP;?godSpOj~R&n-g($J;sFMOV+qTNaCn&Em6{48Ud*)*zj+L9bU4;JM1o@ zeFA2O=X%t5(d7-SqNw0nQWUH-c>)tyf-C(fa0q2ACxRoU0Y=p&`~>-S4e&32PKy&g z-bBft5#o9;o+2r@rU7hBcR5%3^*BjZ@EJsMJ zplhP(42HmQO$w80iCFZ5tQzvBW0Fj!7K|r!&~odF8GvAute87%uVP`M*T}HzqQ}Nq zC9wzGw&ZGdGN&X8eIv`292!pI4W*li%JgfdY1d9S1L}VWR}I6_F|O^05N5q71ndM` zP1$0iv&~TqGE7p1$KbRXu$M%z0^wsdNO2G+&6?a5o zb)X8fjtr-~_4k%x1Q0+5uB$bJ4{PBvGzy)&Iqo2Dua!JN-JY{7%qkNf9mR9G95cSTdz zL}6|(9!c2@qMtRJMCB8KAPl^- z0&2Aq^KxFu9ib!Z9|^IP$JB(JcJSp#K>(bhjVtzKbH)kOz^jdbVDIg%F+GovOSDtYcI+9tm zVVGGZUhvA5*Gu88N{VSr21Vl3eG$j>>w=<=DO*tgn0!Vl#i9uwuAy>Ja7^06qs}^@ z0TRNi(<>he0JuX6+IGjfumv-W7cd2WndX@`t0n%=^%2! z)$(;Z@@o6RQ%v-Y_yZD$>9F{^+!YKqA--_v6Qn7R^~4OD2Sb6B zH;!h3T|Tu7pvcvjtO2G=v(J?|O@OX;1TFFR9BpNi7Bjz@&Y4!ONc+q?BFxo~(yD|0 zrNg#XD8a=8N*AtisQ*TiY5rE?ZM9Usk%)(Ly7%EatI8CuM8=Uzj!N;AGoBct` zBitaR2NDgzB41W~g(;O+Zm_tZSBdZ$B7&ozu%zmg?r2bi%e;Yz*3ITBTKzE|;$M92 zV&17)rUc`2n{;MWqHId$x3z5eh2HB?+5aXy1H^= zq-t_U<9eZ-zrUD;$CH2B9uB=iQTDl>czZsfz$kxmLhm^yi9a@emj^^G?E3aT%21zg zxQ^6#2wi}y{a(f%q@U2O6){gRRh10_#r!2XwX76V))t{!f{yF>*!4hcK#ybP7TgXm zr;2KHfFGO5a>JjB8E4C!OmY`zJCL!vrI5P_35Sb{Ai~KZ?c8IL%Txt_uGnV{d0(de zcyANj&<2DY7AwSN4E+YCP?~$I$vM&xvfH-s=aO%e?hR*F>)wl7$)tMI!ipO&fH%BZ zd58|@{?yRJ8C`qMEs_rnnl1Sv-8}6_?t~#uN#`wy|3XSz>0@Qk@1?lv^%#@MN*_}6 zDUd$7ZPMGgcPa%y?^G7BC^pOSku_-`_I1nnJimolY=@F(CQ*-%I*SvE9$(f1_=P`{ zf7?TwBVD#1@5&jnU*>yslrYE8j^@uENV?vHOr_7FM~^gN))X%p!kABOO~oX;(B5F` zixj&gyHpjzGn$D&H;aPOkgH$dM4*y=0wb@d;2Ni#6CCVGPN3dMf%H+%(?!oUanxdM z&mlDp>FoJJJgw5zb@Wfot1Kr;>QYyzbc1=d_*|P98w>m;X12Qngxeb2v`1O%G3xNR zF#x8|EM=~ZTRSP-yojS~O7P{Gy*uHeFU)01;ZqA=-hS-;MwmmHP&iS@ z3zb#x?!x{1bsHH6tUTD)we+@J?CGN?`^GA*-QaQvhvVP(mYJJ^-M?nMPbVa=`}sQ4 z3_WI_tfn<$bdGXydqwj#EOvZSmOOe6_;MWt;nmrE>@OZiN3jKJ4v_>BWmQ`MOK5}1bOSh^~ zgX8a#cRi2pzm~I&-IICYfO0rt97TbkFvH2pGeuU-dEc9QKYwPyBcvcrY>oeKJowk? ze*y&~`#(w+tgLMRo-Det+GCB{8D7=Sz=V@TP~r0D0|0M#{i?CC9=S?~XFMfmNi z5J#;REoI^kt}UPOM2c-!SIPNhPf0BLogn-Ftd_OfJ-tx*_}cCIW&b=JKb`7*jkBBN zge|6F#pESP?&S7p|GpPCyJ;E~-$t#lcIVpgV}`iZ;F#O&oMrh62<@t2_RdRVhE+`o ze_B3EWt_A4JmAKPW_x_EruF9hd>lVz0T{}8GrNZ#R?Ckru4AGkR`vaP#H8`j%9o+O z1MdjL=Hl|b*7;j$axU=NJ zdDF54i6A@J^>?Nxw|ky$B)D!pqZmICo>~hDJ@u~p!OTrs-hA6Vn)OyX)czIyZ~RK^ z=o(w^`o~of6v%OVE0G8vSw;c$SI60wF0%6baIBWa^VNTnun^CV@_IXwSXBZYp}#3?QB+H{r-f zR?6iARp?YZc??)4`iWfn-U(}&lnFEeUgTBCabdvIFw+?J!`aoWG3arzMag>oy2ihQyGJ zj@`&9*RH0-``#_p`Xnc(Q)v-^7-+jEYK8RPFO0gTMA1bD@C6zGGgwx*`kAD)=gxG- z996Pr`v!+vI5zlbdMm!-MJ+jVBbp3db?kMTz9AuEJ&+JtiPlf5Gp8!DQxYCn(`H;s z(~KPxEZ`pXq+^*(*l46!q- z23ucRI5#W-K;sspZrWNlViv&H7%H92<9Z6_Gi)S9NR+6e&vr$Av})oLxhp!c4bwA z7O-QM68!Rh=7qL6&XP(Z%8@WRuUs$EATw#h(N}C<6%AOU@1!uA(f{yZ-1I{6^jRCi zLjFz65yFBd*6z|P{w_3F=#7S}j!`3x?jqJC3={5-QwzuDJ(^Qh!)8$(HEPOtvbKqH zrHD>bZ#F2xT6zjMd#FAc@yQ34Tl=yI8_paa416|gRe$h-#rHghxgSha_wS|pRp8J; z=C6&bw2v|tgw4vhn;}1VYen)`5=W#UawBn4m#oAw3;}UXprXt}Lcj{N;7Vqu@88p?i_lD8K*N%t@k7bTC#dATfFLPL!h*-3&`j;*{tEZP2oY>rySA zPVv6)P8hC0j+rLa1L=qfn5l8ayzBO46OLHS7$a?ERvvu?s8pjZHN>MgW<@I9Xh{I` zZz(B;0s>qwgvo#UlTD=ns2^%Z>Lj0PJP_`)VAqKabA8~BNpW8mUSu|~G@n8*4h`i> z3|(+;%rqEd*x^*KrR+b{l}5e}Y*i=#?8eV zE1Z4wIp-4qmWkm`x^0c1)alpc)0=`#;}e(KO$DIiV0L6u>X*5U`h7+yz8`3QShO)3$cu$L0xeSE5~`DYh4wi z-Gu7_L7xc3j94cbMlr>BAPexk6CzUYhb?X@wlcONG|^BeK*DhvcRhud;QjncztlcQ zEAztOK`LUA;{h7$6al<9oN-j}4V4URhwxSi1NVL~WAr|m{!p$#rGWQrRw36NHr4F$ zj+F=B(0$9lo)Bg~HmFK&zN%Q|@#-kRc)w1lmL}4K@=Tx`Q+^&lUBa}QSM|bP$7yPO zvG1$gzf7d9`0yQrkV|*TwDy6?epocoy-KMY9Zya$1&cEaA?#e;OE{v$P8@R*-D=L( z54zHQxRf2^Ds3qJa+Ofl@#?U?J(XW702a%17Qv99P2W_77=z15f*&`Bwi{~apY;@{ zo(e#CA285zucaU;i^^L>Qd|^4X~gR_-^GC;woH;@#&fL-qj~A-(8?C*9a7JWta72+ z)k-<;6cE94icAW6qU`PvAMT5>Nt|2$BPmM?MRV@@$dhcf)#?>_6pP}_wR6hx@i4R5j!r5H6@jl? z8v?2ZKedvP7z1MX=hW^;J@lg+ya=U0_~**HvcaGRBO?mA)r-Qr>#Ki6W-ydp>{zXx za1=4S8q3Ozn^K19ID+my^~v92wtnE&fL17G8`$JSeU`T9JmD0Yvl3qVwHm!eSZxqw zr&VpK_Ib=RmcwQBgh_wx%^xKd?t!l7P*J0w%9L>_v|qOK!gg|?KLrghV&Rq_6dcjQPq$#lsOX}=;6>yqyL9%Ui$3Vds!B6f4 zWwf?S!hy*PIs#b7*wM3Sw7Nhy^rs-xQ z%dGSE2_;uYG4zclR9WPc*~QG^hW+1DYiG_fUs&Fdq|q80s#pl4dRVtvUqQgiD6SBh z&Xc~IcrK__wI^}y}xUkV_kyRp@}}!Dj!4u6h;FgVX2{ho2On1B%{U$hDu{8 zgT_+(Vxc!mu)xz#(j2gw#m+Ew0#QL6dtWWee8Kh@RPjJ%;r)QphB1@eg)xpK%Svri z!}XjG@M8_hcak+8M`ej&0wRS_Y{k?eLLFr6hrGz=ezBNrTZ%+L8RzthLWRQJ8mjZi!k7-iZvutDB_zw&zZ#4Pb zFX=Fskr@CeMR<#)JJqj#r8aWEHB0eY)Vr}BDm^&B)qc8jw}3pv?w?~xJo)NKmr4Z`aWhN(I*K$+ciz5M@yOXD@@Jf~smaitE$bFn z_z_UZcN%6!z|vMhOHxvQpCZAy~fX=(zvnmYNYYx?))7&pWrywdd7dB~fO z8_N{2+OG9rxT%{{o+cJoz$t7Y*jE~7@)aZ%K5Qu>x6m_rm@JqlF`ha@0q*AYZv4p& zl7!b*iuKi!0#|PNs5CKu^Zl8CWDmA?hWt)`Xh!}1y8Paz(|AO#Y|-ah;=piLmJOTyM+TvDbao@;}LpRmMKW2wl7IwiTN zq52}eL_9vl!r{(2!Fe$#xF?l^W4@2qm|DNI&S>1M-QFG;%)eTqJyF18=!NX=bTLr_ z?!`U$XQqJ&t85MkyRG3f6FpIMWcTk@$O@uhve~pt-gD$a;0I41uStrulqSI21U#2$ z9aV?@fhD>^G@>}a9N!c_>@t-20{`kiAQRs@_B9WSH3-6=j2cU2CS6qNlrJ>m%caYT zcp7a}P+zB=@Vgtoy|rdb;-Ebj%DMGMtvoP{dQ)fJ@3#|l(N)h;VwOhStop5Dt}MGQ zT$&jdD(2|C35L0KPE^}r0L=C8>&>9O4!b5SV@zRA`5myQUeebU2qs~Gr!Zn0+oR3 zyk|^jdS55CpJY$vN&6o6?GU7|I)y5t0uTi1ey|e_*w#t#33oJ7jq#u_vNSh->Z2$o z4@wj7)zdpZyxC1^l#_s>pD`cPG;_M8Y^_!cwMShsE-nscRI``pV4#*s&(0RLfkUGp zszSsb-=asMlX&h*EZFg-g-XU+0qSN1DklSej&oEp^097|H>XT&pB=u8H|Hc6^?u3K zZqLtTn{1*ShLczkSr@l1FCfgC8+BGHnw{M!tca z>$(>xOeVSshU1wpj&5Q~(=Dt8Z5SZwmN^=yH z=NOe`%VSYsbGpes^Cdt@!rBT4Y@`Ndjnn2WYC6{PhFP$P`_gP(9Z9Y8+Qo$tnOWD= zeSE$(A=WS-P3h8{P#kTe8CqmCE^**Q*3GoxY5G`Rm+uUI+=W^O^;uy;OEvs!qr8dNAs5bbQfcbBC(KI#LBk`har z)vMRaQ1@@_&ph|yhX3<*01&&ErwDsc=pQkg4;&XxA9Gp{JtO?(lwq;s=yD{*m%Ye| zjs3&2`bjU5Wh~z>Kt#~H(=SD;L;Wa4g(f2r>MOz2%_-=v32B}icIs&iq5j(yE!mKy zyDWZG)}THGq>m71a3ZF`U+p@BtW+!X85nT2rK212=4 zQ}{jWq1Stgi7njg_W_u+-gEQ6MTVK_pNI?-1INE>jLyPzWDq?(z+R_Zf>Bz@+iE2g zVG}A^!8T2E_Z3Y{5mq^aFwfI9+l)9Imi${{2Jy_<$#H?Qqw&r9Q(<5Ni{dh9s4pYX z8jfZKHlKbo@*$yjRIJtLw4AozJ#4zxSGHW<= z$5LP5@Nt1BERl1GrDtj>tWm8@(x7>+b#v7xSJ$-DZYd~{%A{&**Fc8l!UrHud4h** z>b@(lj@%OqbS4zNcJp3wE)Iqi6c;0y^0(dg4$R_B%-gXk?5h*jjYmS>G^C&+|3(2T zfrXq^F+IMG1PFzIO=>foqVPsh3vUI!jeLDrBsXFX?mR6+4w`~7dJ-4&DY+tiTKxxRz z_$~^qEY4ubsYa0*)KM9#U2NJ5d#yS*oC19Be%vnPWmiJ(HHAPJHR-%E!OfT;Us{ zxxM{;aKj#uWiH9`uj~-S4bR;UH^J;dK^{gkcjT21{|ChnY9lau+FTUB2xzuXAQak| zc~?Mwe+>7^9`w+H8D?L&9}HZ@Nj@A}0M^lf3E4an8=jfyDTIhtP>=mU@F}EdW(@uU zdOoeh-G=Fp%x-!947|^NITMfwDIQn`^x1kt1%yvTe81b%ah8_usD94w>6@xsNvgqu zQ0=I5PPy#DBTn>So9Ov195l!@?tfv)@=sW@F#IRW7nP0p63 zR*R38AQz^|#KQ1Jhc&Cw8Qrqd<{k&Mtm=kisV(C&%b(RK6vT<=%LO2R~> z$7W-|a}W_euZnY2q~XVQu)%u}ObDnez|wgF2X>5nI4YKLNaTRGA92Au&I@x@1A0Qv zJV5?2%LJbxc2rnPDZxkd#w3)4uTrt65eI~TG%l?J1*C(lg`vP_3h`OBHx1t#*574W zB57DD23y61gyiZT!n_QR&nVW&r5+CTx z=-FMsJ_-I>==Yl$?PJb=AWfV0ex|N`QqzS9!mkt=r)s^&)(vdiY51%G_q`cua_D^hGuBdMSijR^-q$GmAm(Oduv0)Z=D> zp(|$&5p)nly_Oc<*cp>!ywc(bko>)AMsds4b{MbKiJhv{UJ@yFHj-DKN;xDlM-{>H z8kwogJ?Ozo*RCAs*eSIf@%g-|G`&R7U}lKQRkA`UFu@{tV2ovlsee)FFAStz4rzG| zRoL%MJH3+--ZwIvRoO#FZRf}|%MCKOFLcp#*CfyHDO9fNe?h?ZPY|#$|0e?F&B!8t zc%N6Q4~JBfI=U7GaKOLtYg5o!Q()-V#=#O)IFIqYdYu!^I3a&#>MxhhD;vJ7^KMBq+P{Hn5*fC+YQ!ych$R*ONs_Ee@+JgInSaq@CC(2Sa$ zQfyc6fT6qeEa{~LEZ)0kD&k%Pkc1lwV-zAQM3e(;O9cF`W-T&-j-pdSK-N=>A(9BQ zO6bGGsg<(l%`jk1nFNGu5g&jj2s4*J0FUvoRqFvKWu$ z;FX7O8C&IyaUMm>lB-vV%BqZvvAZ$qu(8&{%vrMBHuhZFAbKh#x-m_9v33G&#Rk4+kD#w=P=R(u;-+j5ghD z0Qzb+$-7f_`K0h-BRw-Z(`@4d`#71_^~H~*-Q;#!wM5Ioh^k0-Rn`{+wA+Qa^b}*E z`1pEx&4m?aSOcL(Bo;;iOI~=$xi?{u@b~PDPOwhaMQd_YC(i6m>hb2hAh*Jh(VRfS zWuT&aAU5m+zm^EBb!|)=jkuR3q`nZS8=Mx9pzCk`SWskMVE#eA?5x6(2ELj?zC{pj z{()AV1H3X2STH*ofCoNaa4eAXQIV`zRsIY>HyG!qD2%q8E5>&N{a>F7T*Vo<@)pUO zk%!2d{M7@P?>ga%Tew8vy3qduiQ}KB0TTo3e+sgIT_8O&z#dm`p;+4R9N~d9c*KDC zTIr@R9M{UrzId?>B<|O1k7oSy?(iTu3*~^!)M-Ae;s`}Q>h6MF||Fru<+-P zD$8%b0dz_*Wfqw6iMgXQKKpmZt%;s7a<{h1QuMW42pW}iKQlf|r%*WMfeQpu-<_dv zNt=Rq>;Y4&p#D(ch>0#ZVru|M{zS#OJ#NnY%OkJQn7y}UF9e&&&Z9Q-8(7y1q@YK2 zqas+IqcHt-kI6Jl(v|11_fMV;7CG5@v13T6I4L3j2XzPL0sBE)BjLZ zgIw(s`yHCzsL$`2>`|$$tO*>A({FO<{CWh_v(Ezk-vC(X{|Nv_4yOMAkRW3vh(vXB~oTTDPC@6uGLHjn*mX0(&4= zB@zLfDJu~b)T0$(Kir~(Ajj`IAcL$sze*bUsAMza5(l3bcY1O9`RvYVQ4$y1_^!Hp z^reXN21(4Sti=N@$mmc{g%>o~BOepW90PFhxBhwW3fL5@;_usm5uR${wK7zrly0cF z2ir*~4<#7&M8jNc5=Q|EY$>X_)v{r7!@Y4l?nshI`B5*o8F44;L2FA-_U)+SNb2X5 z(f|-i7JpQPYd~rgzm@2dY&*?-sw4MYr1NDkIe{mUX2K1>u+B=9zN_Q0&8G!l7|qQ} zY#tmHgwZq788UCHY14hB{Vzb3L*&kX`O^QWbYlL0Mm9XW_fm z8Zv?mw&5FBjI*x#QQ2zM0Qmj%60YO1;f;OuUu9d!xV+Ija>;`!rJHg8 zqk$w}P#OV{@;hQD`G~Heq{xB_0Yo$Di6l*bM0n;Dfn30nF(W~mNEP|0Kt03))N??nnj5_me1q_MT$@%z+hgH zJwS0v5dVO|@BxPFq1^p;Wk8|%wKkk+7#W#>DE9OcasfD|lXqKKMZr$?x zxY%k-_$hrg$a$@6cIcJ%T$WM){s1n3ZixRE$p37a{{L||iT`6TkwbRBQ9Q2DMPgLg z;0u<=i!V7%Cv$DOTm@qYn&G}*7qjQWK#+U3yk=x zn($o5g93Brj?ElkMA1XR(mG}oup=Ag)dkMr5&11`$Z3U!tJiA+?tMydjGdRm3hbn;Xv*OVQ_LlVB(A{ zeti9K0`LR;2Y8bjaj#->-VR4@-g8$so7bo2mgY;N)@N9+ZzD3R>-+4RoA1LJ9=Drs z-`&^mo?W+E@Fa2i1aW2;nT^n+W(fv~@hoSL$}f*7LpF;BNJo{CxmlJk<{uV#iF@Rc zMZ#R@LktE!oj~q{gQ|o?v-xtnOy~37k>bAw>E&N3b6Xq;u~Al&I&One0UG3^B& z5RHtn9$G0GMO4hk#!QvoERU|(N!X*+t0<72>r>P^yp38#D#tel&R*%t)2yX^#SEG0 z)J3)Yc9}S%#g>gS(gic=gW!5aq-sTs7E96sJ(@a^5G&bFryuQ@u3kROg8Y>zU1j;9j*=2(d6wX1>kB7(e$~ z_CW3mE4nvP1okcIaRmFmQh>j0quE|}U_E7gKf6b>$ILlX%x6YcFf9x(-qPur-*Q$Tj8XwG#Gdx=lVsLpqpWo&6N47hO9q0!B`HL96pxmH}ic-C0 zNtTAinsN#sDNQG!(OeMfG*-83!L6OVIfZfou;!+`CV}+hg0oU?N7u_>{mG+oo|ySL zE11k)kZcIz#)TDt zQoU?hwuVN0dPmaKxas-wd`rOon1_U$iYPr3bI(@Z)&NDAvSD1`d3#i+m&^{Dm@q=h z{{bl0?9T-IAjSJ3K{+nr%|l2M2lu@0qL>gBulf%~qM?~x9|O|R?+TDSNXA*U0Bh6OF-`~e`qpa!r#m8Vu1tnEh>FG z`<0i4E@(1Z0`5PoS15gRQu=273=P-N_P8YxYKw29ku8O#KBWhRKuS&yQd&w*R4Bt* ze-;(6siB9T?crBoAt{z1THI2XUr*=7VUtR#J1bi>-_zn~yLT`5wUs!!7W#oWV^S^{ z{k7z#E)c%kcAd*w)MIvqgGW{4G)&Ha&!VTK#dPSdz`=o{fmqqF9j(iVve z-Ar-sn3cwyVh?^#xNYOvpO)Vc`RD{4wJ(a=U~RV}RZprwHWk)jYoq(W26bzT$p6@b ze~5)^%np<5-QjbR*w~fEc0?h`>BW-W{@!NNsr>&w?NIn_iCAdoSL`&@v}dvio3W_7sCO8q=c4Ka(Xw= zv)Xo`ge24g$h{Bh8|1Ih^Q~6fg@W>mAb!Kh&PQKrP5UVClC{a1z{3Hkz{WKy??CLpv<9e7w|xbm+W4S>mwQaEC4COf$i4_;##xdLt9Qjt z9NqwD2hyVtBSKGW2L_%<|6KM3#Snn4~e)tSS2_>r@?w?^>kbQ zz!dit6WATU4-cH=AZV4qQPlkCdksz3AJLgtgsXwTkBIJDa{6%Q^bJ%S8)Sf;O;&wG z>x(!4lQ;9P)vL}$VImT354=#fJYJkLI19ICrOH_l+eUmX!mZnI zer-?rvnSk=zXb*3A_!(2TNV=lqKbLITOb25P`qBcSTGLES{JUKlsJ-~K&4jz%~q4L zow+b7o;qWORLW#Ko?tH-pr~pxp6hww0H8n*nn|bS27GB)r#A;NuuD6BQ%(l4# zayL3{XEoevyv$6dji>e|KO1?(4t2poa}+oFCsFA9k7s?3My(c$Y7250daB zmPA6OY~t1$WoPgKiA5IBhn~((B?6ztbG7>ig(vnyi~?CeqQ98tccku9 zgnH;l)tjt!rjxZ`J`SuHVb#T?eiC$4s{KIM?X&Zq-Q^ArtC{vBa))po z_a&1lS>gC#b7BAT%COof*D20@Sk6_=>PCtFQnbNU+vlaMCrn{Lxo=0>$p_^sV@iy^ zbv`RZbXJ%96zHf5YVGjl`Gkk!ePFj zCUDKBgEnC*e8J+E6}J`a!`8*8Uh;4969H5OpTXmC_Sty^YG3XXr`uV6Tud658RZSu z?ISQLjEev2xC=C+z{wkzNb>ukfOOvj&fzSG;6%XILKCEYg4o1oDq>+;Sz>w>_7Qvp zg)%j7A63MW+&HtxzF2baYLF1B{{71OIwd@3DuPWull+*kiTS2oRk4Mc9hh}Q>Wzj!ritF1`pk>07MM*UVmMN7@DlJ&4 z3_J)D|3&$>C(yo^nO&cG3?sxmYZ8YqE$5h9)30pO^|+mae2ToZJ_;`NV}pCxi&i~T z7laydXySwbzbKGyG~vbL59ysKMZ=8NW1e zhiPD2q%>QRjJvj$m9Y8NcDer05a^lC`32V8_h)iAZ!wfhnbB27H zc{$1w(n^x5qHS?IKl#JmJyTF_ZcO943xgM)Rm+m`467E)Wp!WH{|`#T(2!u_h%nv z>$3~%Qp#zPJxmTrk3AbrdNg&i$^lA~OCYS!{lOua(o~wr9LKrJq5`}h0QF?Ca@zCU z0dz-+x6n3aO)$Sbq&Pn+{AYK2&Ncm{u@gX5!W!VD!VU(Qr-eB@KZoam5~&ofFN)+B zuK*xt7+Z|JtL;5;BrE6v#Q*XlfHw%H={DIIG(U@(sU!F7j7f8>9xZlv9a~g zJx2*xt-mt8uv3&BDb!ehHjJ1VjHn)^*DC2Lj3p|Ag&Ql|mzUPWWuSRRveX&P!r5V; z|NaKLKo3S#_4d+B;hB?Y%>vbgp!O9;ymG|b8nD#@jF8N>y|%;si_WQ*mL#@0xc5ID^$V%q3oTy1dG}<+pulh zwr$(CZQHhOn;EukM`YNxI{RGJH@Z%bu0ODD_q*pKhu!#bKu)?GQ|FCxXaamW&o5q= zA|C0G1q0>3cvkH;_E8}*Fm*S{i;z8k;`tF=gQ9JFmLaDmF5H?ffn7zQciPb3M592Q z7ucv>s*NSA|7@JUGt}S_>UnS2I-uR&Pc12^-}zgNv<_Y&c=`PH6^%ouuf2$LUkT}n zEBo&1p_11!kSb4x3A>_czZwF0wY?IQy|%q%a!qLG(+IuPgmHWWjgCwQ;>QITuI}e% zII$#O`EzJR5RrVw#Y#o(e2nA1ns>0*2U(J>d7 zenM5U0FP6XP6afkg$;PnGMHIB^dHz*_3_^>+U-3cAUUdgOmFBSJMrY$#aqmM>FngW z^0hLJ9kevjT2xy+x3x|Mv8U#)i`sIgyX(3y3##V~Y&vj_t1eMwv>t3P3iT9rM{s>W z(svtEoMIwiT!&uh(fI&E9`yeZXOgO@XbTnEcMAIysvnaV zwS6f2hvo>aaR8^5(gVFG8|2Fy%t$GknkmaVI)*lqWT72nXTTM47oQV18E=#`&6TTL zWF_HR!K+r76!|{vMEknC^QkI&wsHX@pjtczgyjsM^8_Z_qF-237$Y*MsB&MO;{dQ8 zMLP$(TMU@01v01w^7TyNYENIGRTT!Y|76sQLFHw_^HNE36@Y7618y4qkt>#0jvB4? zfRV@*7i|>sITD{2b>ju!ByM4a$_J;4Ux-1qXG&2)R|qqrW=NbbCV}!)*-Q$nl}<$c zAm#q%s9_Q|XTAs84XlUcR|5UJyEqSle^(F|Bz{0coizdlk68QnQl|)wW|4#Ba5&ap z0UO`Zp6W9^PVbK#WdG^iX?TLU>xH+6Hwq67K55eio^`3h$QsT#)HKIgLMAT2U&)rp zy+wz6C+A||d*-d6X!;y)qM)~;tr{$jw`tv`Lz3}&`#LToNyZ7LR)O+DK4#b)EV4e% z_Ep>SI#xjJ4P7xw9?+oy(ANzRl#P@Ry06OPQYG+4DO%VM)k%8U@h(2-4PBKXEM=D z?!pOVT5b~umP=FB_kHQ$wK}~#??3rL`o9k*AQn6pEckmMMOv@Qk+Hm%_(`nd0nZq= zwiP!ZMD97LaZMy4)iz*1>bnFelJ_W3!<ZQNK%M<)-i0jmbva?p3v=Bn#f0rSG*m3hC<}M4Z>Eu*C&Q-SG6SY< zC^y>P8yllM9mdw==E>C?8)=(jXDeysB@qDQlT!uT3M=^r;PmY{7!RUphXuQAnKUuS zGdpOTnuWYNV%W};ujr)oqFI>G2FUd7Kp0RWw7UH)fHvgN(<^A7hL(CZn6SAT1~$xz zx?*VG<_8{0bv~7)_7c&6^4yXQGXaKokKR5h+4Ta?E&bt))|}utjOkILF6{cSUs2WaLOGfQX11I&qgb_DODxmW+F^LkIqD zcR*pyVz)zQg0^^SG9SW|NCZuEq-Y5QzXZ7{8cT&{5mmvFm`ae25r5J@J;AarIlwkY zxtAWd?214MEM}-Pm79a0HMgNb*h7dr--^X56dUfI=pLoDE}AB`Ow$`94~jfScXO>O z<>{)Uo{snB@UmN!a@%3{;-h$`L9YSNxvWNBD}5;yO{~MVCL{}$`vZy9MfL)*SM!(E zE&Hsy1zq8&&@nEc0veRYOBj51KVb=T^*)Qk4DGi1GEg~6Rhf5J7u2+L$y?NI*bf&FC&}3k=fDmvRAu$rAo!IG79Qu5>Eg^n}C1_AuZupez3Pbuz`bsAc%;{Re!4T zd409Cu65J9s;#y4cYm&PE_Yw))^?7QeS-OJTIR>+^0VibA82|P4;cc4czcaT_xn66 zvRbVk9{w3Jo6q*a%dKSX?((j5#;bjnO7o6R}tnnV4BNwjTojGlytjmo5antWQn z%_+*}8D%5uPUGiFZlmLlA+w%mTpW=A8a}~uoPA0~(aAK0Mgg-fDgujN^aQbmSqcri z4kq#5Kh-I8n_TLKUODuADz)j1pwnjKpSdK{+C!toW<`$QQzJ!(&9g}cjWm5KsHm9u zL^ckkNA`N0o9Xc|;I zsMBbwF?GFsoyvx_4NN<_c4*c3CIh?;a4W)gkj;3DfqokMapbEJfCgeK64aP50|g}(9b}7+_JBy-Oxj3NAI2Y$S^=!-eE2m_$ePQ&7`v-oYU8_5F??Mo;U7Qy5*7+W(oRs{fBK|wwebRgaUt!!aC%J z|7xeKVl^|)Ss1|$84^JZk1d!aDq1gEOenY`2vR#ZKc*Y-hvpd8p;Qjf9-<9>RbVzQT~iBD z|AUdKs>>)P>^BTdvaRBe*cHX)-{uT}Z)Q76J5>r3MY)r*dL)H;uNt0>pLcMJ_**UJ~Ayw6j> z&Ub}+E=FN^-ho9y+`-h?MH(Sd1$M@S^m=eIoTSf}YssIeDC5o~K3J8Fu66IGyIesk zH1Z~E4pf@!4C@)rnPd>m0B=NE6-ctpTgX(|&><;U&!6}LBQUvtBQ!j~1kQe}W3 z&!Z}m_Ulaan{=a?RJUp+q)7c^vsQ5HJ~l+5+w(Ro$ezUfZ-7~FYyF(^1i+**#O-Rf zp|SB=H9@}Z2W8?yc4RmNGtyvxPdF^izW8&E`9sr21!Ctx??Xi+cwv^N7j1q8{UstImL|@Mj&6E*uw44O zW7XRt#flv$AYEc=%>-q)6ZkR(Te+e{%R6!&r`pW*$e-+j zNH}vEy+Infak6trerhvUm!i9Nr(kf`4g^s3rLOU&ngNd$ z$FJ{*x@yjV8-c@tOiq{27yHv@Lwy+gad6}J>szTCiL@L#H@&@^>LF+}KF(;O(0Y8_ z>dI&;6`SvO8FQ$7kf1V}%p3EY=KUOQesrR6{$M+GO1>1br0anY4mWuPsYsFq2&=?W zA?95l#IxpkU(GEYS~*uk+#=N37n}X)uTY~n-RAZ0a?s>$#q_;l^5iXSs3hSmB~15T8L!gA8R}G7e8-9&GdQ@SB*j8#yfQutU%a?gDA|h&kX?qz1>OT%0Jt zbr=2)`oDO(;9^?9Xsk50rD9fgAGitM*iM(e|=$w z=yw6g@6C9k@QG1^nhd$+AyTS|i=>UMucIid{v4MoZi_e5J=?ZX;E)}?FOnX*G2<8) zt~b`>esHexwLZ0m|I z+3J9;DN5NH$`}bT8Et?w0js2_&+b;)bUB}gj;GeN{(Wjxr+ZIMrkSEJ%D^`IZ3Up}N#H10(Vi`iN6c;5c7Y_WEY3`I&Ya0vKClS(@K{-`j!7D!Zzb(Kv zpWzbhG@4Amyz6ww;BW0YP0Hq?ZUwy=vcumFeQM)8LL=sHm{Rn~>YQMCNbHn?dceT` z9KHfnTa-y72T`voI(Kga9by81Y0B{UdC#ZzR+=VaZf=eKII*4?>{ETMQJ2%{PVY73 zi9y=$5Icpu7HnY(^3fm1y+w{&%Cpr zVX4(XXTcw({Q4Nc8KJPg!8X@=R^JQcdhy{_B4lUV-Ki8kgUz!(6NcBqqh2fAZJ*!V zKK_BE2I)4ZZpo~LAs>!hk}z{Vc+`P~e@SCM*~k=?mGv6p3&Xe>_@=3it%KZ|a9)V0 z8t?g}x~Ta=;fnU5A>DIS^rimfz4-7IWxt2VXb_#ObYz)mJ89L?)-dTXpS+S^Di$;( z(alj*RFPgCRt*Us8xgbPLiPK&gigm>3~`>b_~icuG53umOl<4sx&8Um)tcQgb9}c7 zUeWK!84S@OW5Q5so;eXiefr>Z7Oi_-CRH3V;%XR4kOQS-%S6Ti)xDiiE=OXFoTRj5 z!2-n@)nSoi@o~8fIX!x zfnzV(Y2&7cE9V`SyjQgNXCF58w+TC<*nbE9w=b{p{x1Dmacrg*`NiXP+(uwSKKvu| z9p4|UO`M?z+VLre8WFVwBc_Yusj)~;N5_x>g;|xW*bsd~`-dJ#J<7Zc8x|AGPU-gW zK(bRzm`xR=X$td(LJyiNe}O*nZ!HJn^Dh?JZpiV&FEh>a@1*HginX6h`9%>bPta2B zXRX}zp1L1AxWD|DOU@Rcy<{Qif&TQ}I@amA?5CI5Ck@d;!tJQ==cDbldDR&L4r$y* zqundmQZK}Zf}AfUwrWijyzITc-{31<%0mSYQW%3Wz9j!Prye~6)q1pz52?Nk40-NO}+Ub9;XjU=&l8ke1UqA zsRdJ3sL#71GpKBEodanOgt?HsmrWu{YN7jyOm4*ZtpOrUz^$+2Cm&8T$noZA+~%b0 zrLmH?J#;4m22JSfEx$PMLIR{jKQifgJ+dJ`$K5IU*ZdcQI2Ht3MYn}~s`@(GV)m^zl18ZH>DZ?aW9gSb66AMn~Sa= z^ib|Vbs%NdkISZkR-=xXIT zW{0^S*iJrT-|M4wqRYeos+tkQr!3V^GLq zhr!P39}8b}*XJ)8lE1bXfq#wkt|C!+c!@*Y6|$CLWV)m+SwOf#`&}KFAa!4a(K#UC z3ZbC`CS=U4XR?mYrw|&`c4MxR5**+<3GiWgB1KrRTyAzJd8nv|a=upw8S?ZyakEO- zRvZezQ5GB$wyx%qDPz^D7XW=daUM;!E%nMLBwH8)@PC36k#jRZp172f3uh)jf1o9D zO1lbl0a11jpr5GSp+(RP0?np;qn9e7PiybN+0X=R1! zx0-kcL$&^Feq@3x|Di792+`^=fx8F?`|;gfQ6UyS!UO@5koU( zd9r&uby1Wek^nB@q9>)FOG(TZc0R$2rJznfjX1j2>*c<0eNF$$Z#~;3$P*&8St8Fi zQb!r|yepoArjB=~#glcm>$&Z74LpH7!bjJK3gqkb_@ZCuGxt>`M*di~nlL3)k7bk6 zpDSIW(&3X;Nk8+xCx(&~lNS(PNEo{noJh9?zodoHdQq#5K)EYpA)(Vj6(uJL6R|1R zS>@R$oeZG2_jhgfT@~vEEmB46g^bhQH>b}A;Bj^%ne-;=O*RYk(Mv2Z!8{|)D&Qb( zWo^9-2O+yR+b*q*#XBa(Q`hJB&;3G-ye)XOd}?pU3We}qqMA{+89JBB|M1wM(nJ`O z-W-@EGxH}SN=SbpdV5UA`)MY)m=#xHFx)Lo20S+uE+~$-6PnMGKg}sH2avsHZ}Jx@k{Y4N20drc%I4|48inr06u|>0EirlEs4PEJheQ;IuSBxW(sv7Wvr%VZY zd4WVq%JYG4&61x?a=@wF1zX+Q1LLego8gigQeI4B~eetye+q@RPb;DR;hfk z60BvIiBc}C)Vc6qZQ7~P;>0>bz1?W3IWR`q^BPnB4ID*8G}NSh*6VOo1pr)pzONB8 z#EzFYESK+V^VRcpdwD-#_(=3_9k)cPk@G@Jy$NrUN=xd1D50s5x%|j|7KwcBdt}Iw zC3_-q5-lFruunz>d0zHsTJVhxS#F|ktxiJg8@%x%)gKEZPTwBvc&KxG)mQh zd{IXZj0c0t9H>*e2Hc-4a5RpZ+bq)O^-kOzE7PvvU@MfV(4+ZRzUuz&kKtvi;}*mJW-R!mj8S=jR-a z5o3GZ7IgS$^op1m5ceizq=b0;?@S zOj)mb1<0arn6ic4W}O*@iYQDDG(klnG|FCtsu_vdV@q#_cV2d?=L2?!5M$_}K1+Ot zsW!})DlbG)>t8}k=pw!qg9uVRF^79Fr~_RRv2?2Sg$p5i`Yh4XD40x7nwdwt%mrb; zin{wud@17#ZtV95=TZn7{TgXRW$uhwGnJxX&4gQD>92UdT*SNu0fAfI-XfG{&Q64? zCX;kWvN=^&MHjLC1mzp$Jj{caGsu_Z!vW>Mn zHVwm}iC6{l@+IYk+m1d3Eudh^WSU!0R36-;XCj4$^oPqzMe@_eOswyP8(n6_PY1~c zp%l4e*)eOc4}#a)j~an=A?>S>-*i&rEaeY?tfr`@O#DM9`U=q!xeM--+vtaWcUw)y zHipRf#@QgpW80iR`zrmIkhtpO>d=jD!a0?ES%UwH``mwjidR^P*H7C1%4I(-i-%zm zRnEtf857y#5mqmsl8h$bPeh($c|8Y#@<%H@1W-oP(9PB|EQ%1?6O0ce zU~O|{mP`EEfjw)l$8WUT((;9o7nfzNX$<=akL^Q@Ryk=IG+I>J^Z2=aV!w@cS`NL( zVj?w_4+$i5p(nMntrqM{Z@dS@m)^iNIOx_Wf8Z7w%a2ZCO}SD_ngH|lLi)yIx>H^v zT0A*tW*W~zQ~2?ZdXV6RpfcJI(F=5{9T!Hu`JfclIZXB4pbMKBZ%j#G?UE`oR*fvo zyAB+qYs=-+l^r787Frm|qBDj(9?!k0THOu0si;6B2HOKHO39N{k_@@g?RwX?9#)l>cYr2%X`3-* z4QB75>c#wRHn08^&wY~ireH^xsO*!8u=WIspBT+l)=pb;irbClox*i5d(02V2%FAa zzem7NlRyVFwVc10{89t|T=KQ1g!fBEJsYTz(mTL#;JQq_yMmRwh!YJ|8_sSh=M)4IK zuOAHfYehITL zhhCsh?JL1!)dG>{J|wU;w$WIAICB$<@VXW&hl=^+mC%0*8Z|6`i`&uA&dK>F=w-!v z@Ni;3Yxtq6DyheucN2Y1=eC_Z&MxYua$QJP?3;~v!2gNmZcisW5Pw$g$y8xwOPj2s zI6Ud&Qn|=TQdQ7LlWPWf&0x1W|E4{!)=mn(-j{fq@V;PU^m4z;hc6=8H=b3`J2Xd0 z5M-1q>_vM^4K^_6^-!e_(pP0)YYTUPfl4eB|TLX zTb7I%pbUf-GwEfbYQ;qJn$D-FyhaDlgeTH zFR7gW{|yqR|ENm&|MZ~--QN3^-d|+(Z_nq@K$3nCfE^@=um46P`Y-O+|EWgA#LWJm z7F9K91!Qx)J&d%XBa4xfvYXAFS}kZ*1pGsbo?S`anxbxy5pj44i2wu%BRmAWzz`A= zljH<&$OB452n+?!NP+^j(r2x53-7hd^YzW$jmq4%HOu-}+IG2Hw#8lR%}%}3-rVn( zZ2La@-rw8T?;m(H6g03#jT&;e8>y|_PW$WLlcr?Y!hhkO0g19HL$Q!kd~cpA{eoYZNG z2hQ1xd69%imZx!|2vFKkKPba_sx#;av&Nstd6B>r`fXwasT3m9k*k{-Ac72P$f=61S$_Aq)~7F0CK65(w?LUOKJkvh0pV16o_7co3PiRN(C+yz>`4_ z1bD;YA_|zlvln_OtrcOo19fo8{TMoceQ0&CzaNR0h>?h==%>6I zc%{$Ej()4<&Nh?qYL2{Kiwf3_6)_rRVm-IOI1-a68DSiWiAZqbUa? zY8Qx{fNx>S4cZ5M9NZp}XnvlIH<%Bi_KOe7_Zr^j4BEpctm%%M420EQVFm z;?p-Ifd7kEpV^u)s-eNP#rYe)78H}45QTj+n>gg5n&_4;ZtM@q*)`|U$P?=7CAqM+ z83B}r?E|(qpMz~46LM#}mO##(X1;&%aO1NsC!w;^J-k)=H7#x{7&9LJtHLvOXzZ2i z!=|k!rf#VNL+A5ar}qZ$ew~S3PJmq@lPOBC zoe_A(vMyL-Kf@l>2k#5u{bq9~chX!}Mj$UTzI4S~JZRq3!fG5S+l@CUOafgsDNyYB`Q5$o9YgA@FEJ)D{D&AhJ_$?NgzlL#*DM`~U|F0@hd#hSmDzd8N7h zskUKwi-mm_Yub&$JaSMf%_9GH94tuZV;DkH_Vr|Sx|11LzPlHQhqvb6dH91H3DgLk z$KH1(HOBh#)%6ReTb4dzR$!X8nuaG|--XTZX9*KBLv(A3<4<|+U}s0^CY-;M8C-@- z`I8Ef&lVwfQW$zXxk#mxtDh`I1l^+X4R>WGe(Hj7O-i~+)x4<^dRst004pZlgSqgh zI-b3~i%WN%V*Toly9?*%xYu%VbsLp&iJ#9KIF|%obqXda?B6iY%Qt3bK)L{+0w8hQF^#)2 zVb7NVkXUmvd)ci3GSh9q_yn53Hi+Wew>19G3Gmaaedz+kkL)}wXy-|`%_L;dcKnjP z%@3PVtsm{N?j6Q{Q0hJ=jb%u7xfZS5P!mbGQ(Qq%(7rZvPXO;7lb@}{#SsM8PI~t2 z+u{I$M!SIhCbrEas91-;WVRf4k~&3_L31nT%){?wZek6Sgd^9NU|g?=J(@<^+DejD zaPe*^_{X&`aQU?0^11ifTb6Li(xJ;UTibzoKUT-$%1~bf5LyHXBLP}DeyO|jajU0f z_&m&xZhNjHD!U(^Nq_lvU#}}>?%fsoqlrt23B57vIVJF`T`QB?SnpUF%X0B{^u+F8 z-OzAV)pgR^g622zoi|DKzO67_@Y;qQF2Ii4;y6AfXB_&)tdVC4+2lX%#Oq9hXNssf z@@K|@#m)rjlHlcnxb1rkZZ-hP;MUidAIot`WnS7L6|GJNFrAOH__w>a-i-GdBL+%_ zXs|d_+H_ zvdUQHb!yzQx2TD_vFfW3Bt3pIW4YaO-XB7U4PK4Z$ggUNV_RVf+sDg79fAjp*oei# zC(fHTdF-aQwz>E3MR72^da?|8u^Iq@iZJPXwSHH&2>k5A5Y@g=5qwi+c_G;x_&s`q z_d+CdLvI{Qx~y;93?#_!jQ*7>lnJ-YPTsuip4?0RjN^GR`rE$D)mwkWtaI*!+yD@z z+3MF$I_Ojk(s7JClPqc;QY%YQJ1dz(?}5z01y@Ltaqk$Xbn`$oO=WJG2a!M9N|Dl{ zdR5{`)byM=bIdYNvJFOxC9DnkX=%4HA5 zc|6x1mx4w10(uAX!ArxuTb^6U?Q{-U2fuoqIJl=5mm+6U!kvtuFEEb!pClG=-#Jpm zXT(#wFvSA!r@7EDVsG$JdwMdhUq2c?u^AfO7(P{)tqW?|(oy5Nuz+tS)KS@kwoNNi zGnkphN7DJfAE4(y?<*EgzA-`_*BD-CotYP6v9oF&m%Did4z8ZSkEMl}N^(X^%9Z#} zq)PPVDk46{w6Jq=<{Y@0T{X38;O45JpOUA1-oL|c_W_3iDY5)FSK5CG68&G!!2fXU z{O^pC0fLHwM21t)K_D9WRo4|~IMd;4Ygvv*8ONb7nw=P{r8_dTAaj?T`GuCA^w$ni47!_MC@aPo8B`WbBqTZk43nP0Z85K3Sl&QD8|v)-P2){cl$?; z_oi^HgS;1;{V&~fPIUBTBKi1ZLIL?0Z|2{79?$nhrFirl^KM?UKMvs?9e-jRJ!ege zrfk;Ib@txKlj-1M?%}=I87QzVd0LCai*-V%S`otD)pqxyld~EBO)Z_A|Sjstan`MV+TDH6-)vs zSO=%*x#m61bTjmy`cL(g$N#Cog?@LuEDG1E8UhN=LI~(= z#zW5i@8&|kurHXVM~03e)5&$kI`4GEy6$xIoIJDkKVznvL5w#=8B9hKc5tZ66P9K; z2Rf%Z$KJCZ$6-5tZ(oo{3Mrrzg)0+L;<04!D;bwHtZ<%jM3sT8c%FG!1HA&XWZsp} zRmf6BBP(sBq$VghOG{W%(k6>tQvBAfhfd(Nxol<_@((QDo(`D9sCg*j4e{{g$($uJ zCi+2^mQJ0eoGuX>z~-2qB+KQdjB~sP){&B zixw6R)5Ahz^EtbVIcVqI=KZlA7L?B?*YgX)J@;5Voro@0@|b%#Dz5d>|Jf}!k&pNN zV>kWAn9q0U;db5ZkB!Y?_rdY$Y`;i+#x)Qfgx~#iXdY|t&F37n6*7U`M0VvF_!?yT zcR7+0IbNb>W;48dA|JS=pAVH`I|LX ztQeH`%*nO00Hjo^(kOh|H*W{@O6Vzz+tY9SW>EOVO63Ru_iP-W=0$hQ!X4!fui-Y$M{UR zTs0bzJdKsRX@#4dKEvw63{rB2+3VrA&M9@H$X}na8+Z3!q-+v1K(gD8S#`7I2^nLj z(yqtU{^V~2yiUKLh+uZylQj|*5pi-75pi{r<@vm1q-$T}t2$fu#(T2x`;qi_ z2i{k&Gt}F9J^F{>)&`PUf3M-DZBPb$wBwlzjSlzSH#w~*?Op8b?#2dww$z$JtKCw8_Pu^TeB zT;#~nA;@rtGo(`-JR^9YLg-E(r!J=zyxZqeyT?y%=-xdB<6$iN!@+2kHS#1vylbbT z?-$X)`6#uxepZXa^`L{dl&o%LPnkD*$&xGhoMv_*a2&}X&A3us{A1)MW?6)~q$;Eo zri3aJstIu;pp6T8`Wk)jLerP1+jf%$ejq(fQ)r&WWNouBwN)H#tX#zSU8d)&?v<4B z+*W%ZDhJ@`98v(h{$B>fH&?$M6EpHa<$N(|iABj~1n(w(7$Qf=ejF+hNY14!`t7}{!)B;{C^L%VCmi^9Xg$+0`8}MK@3mZ4j$^c2@Ss2J z`0)PU)~lhrkiC|Kg%I|x^fQ(TE5L*DI^DJ_)Gkbb9FMw*G#iOua3BHghU%Fr)ZhRq zu!}5!-t)YuC7>;UESo$%ofW08$Y+64_QqC<4P*#y!W1>KchV3ragSgvAZ$2jx${*m zRLlgs@vv=^QBaDe9%2>KpDWPHjoARj_I-mqflCG_?+@ASTapiu~*-WY$M%fb6^#-m)k6>BT6OXdPQuPoeXrpyo5 zm11`PQ1|D2zTRN~-i~Qn@m+;n7bR4*?sf`kfGUzZLn(LdbD<2ie$@Ac5UsIMBJ%z3T{khb5lnkt9y974QCG`83C95~G_N5qR}S0IBnOkp~D>bZsd z>)zggtnLcc>JulF%wboo1*AHoB_C$#T)D6Bu%S{RZ0f$Lb8+8zX(>v=a% z`suh?I~~fSee&b|Yb3g@_vd19iQSSz&;O;FE(rpfLR?B6r3RCs_I11cA67r`^^NYV=0Wk~QWw5}=b z;zrFHIZ{?Q!?vB2$R5>$c&@jd^y|lWeJ}xB)ewz!EL!oGbyYC3B*7q=X!QM$l8v<- z19FmI8Lqs&J1NfhGr_;!u;ZV}316KX0Ptq*?Voe=JYRc5#67bRsKi8>U|f}MO%x?U zv1z{5MR`1xpmj7Q$+ACixiOtfsQCo%PG^;~*Efd)I^+g_wyjYSy-6a*mbQF5#2@Si9G$jH=q_05Su2Mkh?XFW$RMybl=jUotWl-~` z?9Di*!Csjd{{4Ck=Uu@J`)%Gr6QbNQZ$ERf!!(^NG!p9Yu)_C|gr8^>oCKCCIt=By z8wxV#w*s~?3R957am)|!=rUKmRv*7Q&Z?J~Wae7dn}z!fz?BXeYX0*O8y)}#mXI`b z+m{^_hDg5P(d~sN?P#)oip*86PG2~{I(ba%rA@LA)+y`ZAKX@7k!>OrL^f6VP!3&kmD@&<<^Bk)C?wynwT9z1=l!>p zOF2FHS{N}@K`VX@euGufBB)XILn|Z9lj&c$TaSi2@ZI*|juD@Zwg)WklAODhq1DxD z2Pj{jN02E)PXA3F{^>j=ZFQ}iftES%0&9QN*Ml9hu?ae$wNzwu zxgp;W@t8iL$-VKllj-#~cJ{ua(N!H9>rJUOT`v3Ep!z~{!0BMl>U7Z%0=Dqfgi!eu zB^VElQdvi_`#BWz6aeK4KCsXN1i#HRSUG*=E+3we+GkD{52QigDfd!hcD zx^>ttXNLzyKj#!)HXc4UsuH%wKZQ+y(#VpsB#M??I~r%7#jEV$_GrLBXX4Zvd}v8g zg`3tvNJFe9`^#w5vQ!cvol=z&BUh2=xZ%hh&`hmXPy7KYCLu~^vq67P%tC`IYRo^e zE3X7fpI`+lk(_h^0{|Xd%vDoxuO^uU#Go-{fhY$U6=(o@#L8ETA3Lz{!%b~qQ*jfE zv|uT|`Fm00O|>Elv%aQ+!=QNX?J6#vzc(xaoXHL{6ht`^N-JQ&Q<6o)X2Fa1GbVFH zmYak!>y!vqYyEk#$5Ip)jZ(EF2A^oyHJQ%JZeS!pg8e`vh)yUK;xtl;mL_6@yet;k z1c+Ivu>j6%6td_Qqd_lOmAF%a1Z$VFAS;%m8ZZFbwI- z(kJcd>$>VhxuXAw>~9Dft!jnNEqA{3c%(0-Pc7f^d%Z$^vds7m%OVO(rA2mFgc_xa zs+KHM3w*&lpmWwY2fR4m!L0HJxno)1XA2yhHtu^95tggp5i-25^e0?*tx5SpKpY5@h%*VUzF4zf-a8S+i5pMy(M~9|PN-J> zw6e8i{&;G6R!&J$N4UFh@)&yqrKsfJR3)#a$cmLTAeTqXX4j9;sAK;j0Q}G#03Iaz zAl4Fe$nm*n^V9tLN7>`d20_uMcL(G!q9&9kti2+YsU21)t$4b%!*0bA`tx5*)e(<>Uj91Z zBPGBiil!XRCmVlUQb@Ik9*LcCLPdsPJq1`eS=NHNWp-5+*kvl*fQQ^jnotfw9!(C% zEQ?wdX%v6}zIucMa}01(hof^^t>iETY#-pyqXvM*ruh495dgQQ3hKkyB;fkQO!f%S8YM+w{NRL&*#GKRW@ z(IPSrl*_@Qy6PTKxF@UqsIu-GBU(F<6au+|xKk38K9*EnE`KB0e}c$;KE{P^hqZn{ z+~D4pezw`Z9^6A!1O8MM4}s(zDe-&X(~`Bp$#<*Txbyme=ac_=GuV^(@w;{M=Ymly z6_cHiR5BrND4uW9k0=sxfJ1wRu2`-t%G8bwi4ITs`>mzSj8gQVA}yukVl;m<8v^$M z(UMPLSIe&)Ctd-2M$-GnsZjb(B0M35FnydAU!8Jt=xGX?{)DC+S=$g(B88e#@-f~l zOo$5^-7HmQbyeF!ZjBXlrra*J!Z9g-!`u1o_OBdSe0x#+UYa>7q_NSlkrK2B>Q8rD zw_5+_#B%aA|MB7mAg)gr=21vc4_N3aS9)Ci+5?uNDHg zqL3QHya}b1i|EShrZx5e1X}=vL=x#lbE#vOX39x6ZaOBMq=mZi8Q_N=be;u~03Pbr z=bN_<_Z(lbcd`)DMUEtUBh(TCC2T183R0yc`>P5+&{70y(*!VVF5#{MKq~1- z6pPlJFJY(B8fb#SY>;jMs%0)+$n!KSaCBo?Sm$GtgN-^XxxLyww10&Bi5Ah`_G86Z zIdnpAu^HTXAEO(+!5pzbv|)zaBYLvRBBnBeK6-uxIkMZhR3gKBy55a_0g^H>NhJj< zt8>;eV#E@OP`qcyt@25L`5;+{5=1abD5n#()_jRV)GIC_!OAMI1c64uh9#wnHI2@f zln_wLer?P3czjb9brrYQH{XI$nIS~Dn??*P)JQ|b6ujDr%djJQFuwfwnn9M$rWIR$%peswL3*sX=rltG>o#*aAkSF6Y{xGqd$LBC^ z?4F|=9G=jl`*y1rWqxiK|GEAV?~ad~m6pahx0&;O#*^jDmok#tasT(|`vUjsj72|E zAro6(n7UCxaOCBN)P-*V>2D%(qc~~fKZ*vcZ zZs<&QL3y&-C9QeE?pP)jb?zwW>HS(yNi z6f-$OvNZPO`B=m)_+L!<&Za%Ss#CiYMxN*Ow0MvBjLwXM+sA8-@i@r5GvT2i>T_1k z63d&38^j^92;|;TuLQLNSp+=0nc5mqa4Pv`k`YnT>s<$$edn)oHXb8<*cr-H%`^@1 zmf5iok9eUNK(Hi9R@CwznACY%YM2;BQgR`pNruubOYhLy*t^6SlSO9NI`dhFJ6W?j zW$%*3dWY=$$3IFy_X2`y0x?oZQ9v8&Wq_$UvKc#-PQTN-lWpUo2~lkAV9$QuF(hWa zC`Tf&F36#86mJ(f`d=PvLZC6Z~sH;+F}d6AfF zKV4560SQc*Fcc079Fn4B0i_UC;o|aL{MBk2m-4*11<@e!#=>2_lGr`aA#9!U>A1+b zsrx%P+7gJDH5bpR`lkFy0K8nFA1JbPAw*Y5RL1+el1T)4aSN9clznL-;*_FZ*~E2} zyif4sDo|vT#oTvOHxFG!e~SvOYwK)Ezauj+9!O119viM0yvk&D3mAR&Q;HHiQ$&SB zK0-bq6_F}n$m4?86UIX?&Ybz=KyG0nv`A-HjRT8<)`?XUq;1ElNS#ZEbS77x@YiZE zEZO@hV(0sr*B)*-5<6nY3|h(dO&1)lv6)?fqZ{((Yi3xXEcO<4V(^kED%O=tszHyM z)2f450w+JLdG_|bvLC6%U+DtFt|;Wt8fbu#ZKR9Q69pKCQ!-najI;BE0;Oe58Z$6s zmS+a0@8mCMU_2@%Qv>>PG4Vvjw$oCO5SQUqnv)>d6s(o3-d#c|>}Wi<<)XnZHnk*G za%F3QOv#$jR5!G!#qj;n*BPLAbi+6PO zQG5d?dikSVJnRL~gpFCd(rXXGfWn3$Ohmy=c$j1u9 z1hU$6!hg~CM}(zp11vF#PO!OTBvuGRBU#JRhMe8jn{Uk6nVdq`O!@YFOa+{X`t`L2 zq|s#h7wKxx1)3)JsYgIfLPq_mVJbxwi9Wu7(4dGgfGVu7q z>;UfKDP5%mBXJdq9)LrtyhS63G&*wDZ&i@5^J}25 zqB)!YbZqg7ft1ZyQn^2nY(%uBxvH>xC(o2Fnlw8D7#wz>DM(y{!Wzh~#LcerZdj@T zUX+Z9gnn%ALdcU7?MX)6{GR(8!1p~s$Xl@uu+LBQxK$(EWoXP+HWuYp)*${PC<_}B zB7bHJZ9p}*S-QoY&h>Q?J_O2_Pm)r=jQ5gAj; zQ&R3Pw0<|`S~Nrca$WWotcS>tC?@ufu1f#NecyP>A4wr_xu>w^$NTej`+WVGAB?pM z6}xq#rzHZZOzxB&Bd=&p%FLSs9MM-fZQl0=`>ZC{oTBOj1T3O_3mID&M707a=RU+$ zMEJ`H?m-goXn58Kpl>7Z+Jlc7)(`lT7{N2tIP6K;e1;UWr($C*bn+f1-o9zDQi+QT zIA@#=Vd5qCglelQnhCK7q>)h~Tz(Dq0XVO%urq%7yJooefgXV zpU}|zd`b^VOGnMd(R4+r6-AEnFwz?Q{7<-SVgYIZgmD-mVvh12Z}_5{isRtySy)^MV_`O;ce)tT$4N%V#7phnV* zWQWtYlvF+vF^`guF&SHhJ$$6@Q2m|>37A}7Qg%W&`NldE^T9FG`SJBZJ_EB^Z~m1I zh1ntmGD=<9@PTAS5;=)X3~FMDYcvM|rbcC6m4|_nP0F?^?7AK+YAF^6oKTd>O5u+! z1wR%>vP_I>g2qROtmZ_VHKr;9_*Fs7n9kg-6=d7*k%wazDBxDH^c!(!I9uu<7QFV&IovP@SoaKn73ExZxh z6X@r9*g`qf(nNW=$#N@9mN-Uy#bxL>H=}gVM*!;|)KbLyYT#^@(a(l>CfIsG8Eqxa zVUcxLoEJP3V&hL`Gnb-DY~3Gw#8Mq{Dm`GYqP7IZwRy&fP+(P5swiHKHC}QSHN-;2 zB0*3~ZJ3E)+XN8K{dQw^=y%T;5>G+0f$p9dEmGT4+$ql;MH+Sm4P8;E)&;4u;j-z8 zRDzu`EDel;34`!{E)s%L{27f9)4T=-0$pB5AL395TuMbmFr(YbwwrG#ii^GZ_U`w2 zpY+??Qy!y>dq4X+8%4^4LxaO}xZ^1p_Lk^HcJRK=JrlyU11Ei8%oxvTI96>Du5gh? zgPa>YbT&2~A3JF;v6WzTG=aHfEBM@ncbI5)Cop}z-tjxn@t*@b_&OFNOFfqCYHt_W z3Far&NcU|IUAsG%d}Yqp{BHxTmmw>E_UL$Q1oTRIt_AdntbH~!=1-JISulFZnedr^ z!C@uNiEd*W4ok+0kExyTO^c6tq$!dINEZCvuJ%17DvEDUK+9A7jxxRVwqO4HW#p&> zVl>CJ-u5uft&|WO5k8PUN%j!Zj68Edx1c;BndJ1uC~>%9I?PNlWAkLbqWnF>0wcbm zfk{KbjU4*hn7vp#p;V530v@Lw5r-WSQT$P1>b&Gx(Y?QCpvVqVT?1LsXu7tf{FHiW zBOXF_l!#0LWWB_LWKhqyd!$RtzJS$q6!(HR=odZK&_W$d>5lEnujj!QaJh=6T!0g{ zSYJjJGNaAAQnJ)0;ewkn+)iCsU9G zmAKmO!|p!buXsUWT4$bv)RB5h`Pt}tXNH9`Ffc?2cGiG+*3 zG(=*8bF%@C_Y{S9=%{hY#bDwY+0axio^GMDN%JO$8VrU#k*ydXOe`Mk!?b(J#T=gM zn&7C@1bCqzb-DMq3)RO3?Q(!c-AdlcZ@WzeWV1X+X}jG{53HBb-7B-)QN>W%9<$AY zEOK3fk+vSP7L6iYv zVs&n7{G#zKHiti9eEdL<{84>+wz*udFybo0)hk@jQUD+PKOu?u7P12A4VgwW@|APP zX_Z`6uI^r!+-_tDKUN>)Sfh;{M8ywxG!I-^9tI-x23*8kC;R*Lt8Gh87p2|tbCWu+ zVT0J1(Vz_h6YmvUXL{Bd`kcWSoWXu0x6gXc3Dh(*`3oMdjc_(AXoqKyZf@>fcrymT zuCCuK?VH2@VwubG56_zaKhuSU@t>(H7NeCu)4XK5zzLFq<=VdnDRqay)PDcQxFti; zMPQ>f@g_Fw?HTKM`kunQCk2q-x#%L|74LsxJY_bUQ)03I;%mqRin+rN-w{z1R~ zZ^<$AO!O@O{L3KazXrZ47}>Fg#JU(%0;Gnv#-s{p__#x%b)y!t>q3=PUZxg0?ORn%F$-EA&5Og@#@FdhGU*S{Zx3jJR4gaO9Ul8bzwFrM z8}KDUGbIf<1+}T)No_0DzoXUZ)O)XWI#VCO|{x3zr`vD-u`ByTs=bB{>pt zlHDm~E)(YZp$%hvZ4+1Fi(%b5x&mhV%_p3L`oYnJjZ&Jar4X^+?ieevrTUEuE7`BD z6ahmb?h(zw@xEad;?h_bPRh^mT)QV)mD%myit7md8p^NNbAQm1V?20!i#6bu?P(I!W0C?OU25_Gxe!6Th z1v`8W^r9a#dwf|M;ka06JX(}`HZ0kSp==|vG?|7O!|KWGnO#{sK>jhBof&bqA-1S1 z8NDj$05s7=@ca}gX7G2q8*f>GfWZm#J18ALbqfKYOj7wqUxRFw^RgBUIrfki*()K9 zEIa6IIt#qxyU7f=fS-zjt7-u1p!}3ArK7Rd_neT^RxbEPUB!`q<*X z>nZ@8a9Xsyj1w`L39()M`{Llh3~VNU;2|9JuFrB{?GScrhENI(N}Y2HWSsK9ilqJ8 zwj!4@%-LWNeUS&Li0EC`Gx&(nJUoMBaY+JY>4MLz%UTlG<<_iGWhARr&i9as>m+5^ zGFjws9PWwhUu;*wWi06M0s6qirwHwM@EH1JsJRa*bb|(~`ExJP8{+)vCWWJ+rQyQI zASz>z&pu#b7zTF!jv7eDcmWB-Eqws^wsZJsmACRc_5y2al`|#gYW9k(%V{=?-oIGQ zELS{AL)e@V)?(}%cZlyqu4I*K#!?fqtU1#*cpUqgdd**T7WYVc3jC?7{308!5(V4i z_lQ)#0mBk5$E{KYqdl*?6}3wk;qma!?2Mp*{s!Pusquqq+-z|pd%d0L>fphymtvlo z)afrT+_7=2&A1HXNa`LJS8i!eF8P9q#q6Hy1lhq|g`EC&xFj&V*)N<^o9D#+8|r?g zkR>!ndHvQE`q!IlY$58F<+WLK-x8JN8t^U*~f+iZ&H4qNfvLn^O5^g_=(_sA(0= z@1!JtdgEiYZ+amFZZ~cu<#( zT)+8ZV=QGD6BgP&AuDx3p>{5BF;N1OXBFcwcuADwH#6EN2iTg zBC~ILHnDaHKUM9Xjvg^x6Cp_ym&6=WkKLEyg3m&lB#Kjv>b9=#`_%<)#DKXD7FI@j z?utwFas90595+o4h7G1JwU+3hw~Lcc%Ol8`-bcuK-sSe=cQ$PQ$ z;Y3cu73mVX7Ds!BR>`hMO9@p5fr1#?eh~$rKNJ_hvr~tVz?0e zOAer7lqY37C9djmcjH?9S^Zh6D8ZpJi*@43%ee9Mb!Pb#7SZrhMATW)-oCQX-2pYc?2r(M5T_UuQn^!YCP_qGtXEtYtWOt7Uuby#UV}n90 zVv84+E}v4NrCCqxCc4`2#KqsO7ADsD(EY{BX6I;^v+qkl{VstDM@Jphnx zbd2zj_mieR;s%NqF8=^uvV&=lymyND4KteZ0j)FUp5+Xo(wh6hb@`Vh66S_1to}Kl zYHx|oG6>-q0i~w9@>)tR$TYi=cJQMv7;)bhTFHxJncvRz!x@~Ldksng#|h-3{9=Fg z`Y_pLlUy+um@QyHqC81|u0NuF6l;Jjj?U?_MdD)D7@uy5{~!g37w`N5pdX;+q?MEj z)uxr=uolfzJ~}$77P)b*vqkg=#sU@tEhjc~5EX4A*Pwr5+LQqGHvhUEAAO^!1ocDH z1pcApbN=&*hv0db4`g4MuBv4zLAg;-&xI2;{u_%=d^$ZJ`0Z)JVCS?q;^)_go{?#P zXB5AhijB@l+TLdLru*~cuB#WAgMp!%<>RnwLH2-Kt6*CR;F^RJ#~{(-7tiUI|F=b$ zxN}PB$Bzt%P>1biO}SLjpPhPY_qFY76}5G^?mW{I8;=*+hMlP%uSdvs;@YN|*hhL8 zZ~ptC8Gp&oQ599bJ=56$$j>A&_4JHt20#=&mE()J0ZNqU=V)@w^77h^HX#T8U4Wxn z-u0@xQs1!+Tb5lQNc_75dAy7&${ni)D!s?W71$z&-)k{;fK6SlIt2XD!^GDdv8sKM z^SDVV1vlc)?A+I|bFDJH3xdL2670i>F>Nu85uGkA;bBv?Pov+;@lW!E8B5usTtc^i zYse;AR$5wB1W%sVb%gx~K$pt9bOPEaEiQdBW$HQG?>G0ph3w$qtT>4VIgko0qMbkFFPGKC+}l z{=CpBx4ofH|ECE12S}}@qiK^!GW2S4iBclWkv)>Q^byV=5Rl{k+TYOziG*_4-bz)O z+tSlRb8B|v=1U34MWxZuYs;po1=6t+2oUFQdEvS4074YVaddWf2?{a6s%CadsyQvH zS=t>f-eTo*smoW##o9DxqHYNdPo_TG)_<`w5;d!pOQB!ILmf?sEKs!7V*vLjB=A@DaxSF z+0H@8Q^pG*Ns*L<*UGH+67d%)(!*gBB*e*izZCRjAA^R1Q39QUyKt=K%M*>p8Okk{ za?ZK6AObKv-F|GFfGwg0#%r5#jQv1Nmm_H&&)uE#v^>3kVV}(f1hjR$d)3#*ntFFV z9_6)vBaw6r$E-NLroSE=kN{b2iU=H00CO~~i>N=xgSa>AAqXz*yhboGZ%;LxDV082 zd}DpNW1gdklF_m|+s5gobQmtoqUY+0eFWjw^wnJB48;|!FTe-jwqxh#_?bR4Tn4MP zKWCZBboJP+0C2lp1h*qbgM-IUYYW3ewdcX++=Tw+v$!x?Z&dt9uUjF`Y4$c~5qc2m zi2|p+yy=Su8I9oO3(fY1fJf4zMTW=p{f70hO||Z4R#Y}_NJ@fPBPI?GCU&JS_N8IX>h^de_)r~**~mYtk~~i$c)zA%xX6F0$TukE_)jsE%!whD^IiXQyX+ui`|lyJcj{vvta z(e&Z_U9Gv2HWb&`_(qt1dcy<56HJ5z#~wJ8yAtQ+xFD+AX+f+17&X@n0Bg(?hqDG~ zKX?)wcq0xe>K|yEiA;fju>+#6?}-8>N2bya4?+RVFuULaVP))Z@G`4*eaUr*nZZZV zR|tJFqr2!0D4Y)veiaa>N(M(lcZm{@!2hs;&bU%P32o|6?tBfy`SuDu`5JFDnv2K( zd{3Mil~iBM8r*dU)VqMjuZRve*Y4!ANnxw0XIE_I$12`wQfPhx z@mrBuU9{cx6Mr)q29t@2ZRngZ7{zOu-*8XW%Iyw%gge-)ykTHxl??h7@Ehank>8jd zU_;STOe27&Hj3cMIJdZFp2@psVx$3vTZX{i&YEGW7)(Zoj{xgq{FMXmH9kYn;i3gB z{T#$(7Uy*NUo~;0k z)-CihqlrK)Vi_gb@<<@n`pZVLW#;EwaitlBN7s)hafOj1p>-CJZqF4slYJJGcuZzg zCJJhl6Y*(<&=u9&+XNBc4RN7dLLd;IQV&7aWt-o|C3Am=lYQGM8xvZ$-+9ULx+p4nP zaTnp~4LV~^H-ojoBr>4n=Z*y)7!gTgpCQ7*Ieo4u%5wk#nYA1Yb6}VS3kG<7JokCW3wC8|- zB4|Y_+&iyBj)>Dn)_ZtD6A%zdhwzbCov8NDPke5v@(0SSF@&+iWr`}4TzkYZBJswa z9ZK#67bi4tz93@W=;UjHwz%}OkYzHEH~+iYo%9sW&*O4ZMt#L!ZSC(K60&wb00!E< zSJdbfhx$2%D;J01+)5ZR)0XdEYqy0*Bvg0B6vA}DH*l&JEfd`-$4-|3bAc!V52ls| zI`~ZzEcVp}?n0c$$91h~c8M@WyQgK3mFmZb-QJ?|=VaXpCuyX2u+aWYb~*0RGNU{J zue9bolpa@bW@l{cqPI2i1PLyvvJ=q;zifuz(4c@)U_ewWKG z=Oo`SGGQ$q|NA~>{fC6=zq;yU|3{s5&^NpLSDug50XX_ErT;Mw`>(HhhW|{E(o*!0 zRaC<2PBEe>u*|Sm<7J-VDmXL<3<4ezVF(Y;zpo$Ur3~2Wx~#7BSm|<6Q|<$c3GG0G z2eC{NQX>@1a7~Y?n@6`0&yuXDAj)0BQIBGZT5EH)D(+xTP&kR%dGk7X^V(s17^u6o zg&w(E-MrlV%6nhXcO+j7CQ`l8VqH1g0H)MD}M%; z918|j0%wOWj^sV(RvF}>NQO?FnEgG_JN(nI7f8g+;;<26`Pi}ck!6!RHF-7{x5xd}!QXz0r>o_58zfL zwzlUv7lPMc5-v+3ZbU#N0P|iJbkFHFxdbimOOW@@PB&w>$e6$%x1i_eRV0wnp`aUCu1mB!C6ZM5MKl`5dJD`LWN||y^QzAk5md%;2gLAw#XH#| zpOZhqgqH{35vc*^Aw&|=Fy ztp2pq`|(sA!;3GoB5jGN`xIr-xt;_+$}Cn>iI)0eG-?w|3zDwAD|bQK;eudz!U(|( zNJfzC#>(1e{+y-_a^M#v`#gE0d3Hj3{?FnU%pU=b?0-3x|FIVMKMs8Qe~$nE%5ing z|30R=yWpyazkVUK0(SjN<$s{Y|Mt9RU}63bXy>I0p{lUb%#C*lOeeVKTFFxPQK(d= zBv@W0ROKy>0s>-#Fj$Vl*Z(`z5O)$6o)?yW43_~sG*=#Lon5wS$h>r$Sw3WaSz7<9 zwCT#@V)4prX9G{Q^XB3OcCR;kMf*qn=i5avv4DUGF|4=}@(xC=&g^;J_m@@vGe`{^ z-??c4v8IWI2Gw81#<7toZ(?s4a8W=mBGe3P@~EI|oup+F8#m<8GEWnn1fh&VBB_c0 zmDd2uVZF(iPqkY8S#x-d5d&!%5K+En*%)$uv0RTFoY3NrmbF_UGyfG@nKa`dhWv?} zyIa?5xwA+)H8cBgZu-d))6T%NcIo|{;#-JK%u4#>U0wO@plDK033;yqN-0y^y6Tdo zRX#aCHd1w%yjg)_-+2^yfp*nGMZS~z0qoa9cKL3qYS(z-(on^yPL_HB>`DcJ((s^Y zleAH&T!nH_C7kk`ITB2HQ{Bc=n0u4?G**&$jdF!PbTD?r@if!#0A%n81L%g zZ84q|X6xvi_TF7Ki!W_0^j7bp61<_@@cDDaICBBlO5vL~*8x9uE&kSE{FwN3@u|Y> zl4DtiGPF{+MbC2~bATuMBPpuFWI66da&x95k*YkvQeJcHCkzz9AX&`Ps6}IQOcZG$ z*|@~?@S^=vS88}{mxKUE}!`#5dZI~_I|hi5x(PVf8IgnFZT^OP{^J8FN=5#SSu3%$0? zmQQPhY`U=Lf%Y8TELB>U1`nw6h6%Z{wNVq&x`^4oMDq-_d^zIchjUHX4o>qVLyT7~ zW9kvh?X)7%(?iTTp!Tw?n`^qexy|k!qFUc=7AZuleI|%2Pox)L>&wFqwoYK?dRNFV znpaVL77c$YT0=XJ705GXVj(;;S0jY%+jmQlgoBT~pMdVZ@oa@qwPG_4EliFaf`S zyXtN?z+u<-682*i5HSMN(Z8f-35}CvER8ZR+?6_PMo=RN(tQvThh0mAb7ySDj^vi} zomW$EfSCw&>bVzsBym5?#rSKbSK|ZD5s#QQeTFl*dL9Ow*~G1Xf^wn5yW(XYFH{ixHx<0G-NzcFjGByUi)va3|DBz)>iT5M(D3aT@nM8UFSv{t!RzDp zfTsq-yLTfM7vNqAZlrPaKsAgbqz&ihL`!pSg|iPAhKLCv!jI$qljcjoWZ+2fiUXhs z1FW-88rA0zCYoOSP}CZppnvF<_~BHUn-JNXX#pLfN`+?g<(ADn8>>JI^Me;}%^Qf! z@PP?W2#KvEPV&z=ETtryQwdO&uZh~Gq)t`G?KjHN8sF9&JQI7oxnu=%BMq`{_@L1AIj$S z_BXoQ039#ZdrUPlt!M6)s80 zEJaIoXdq)>)KwJz>7Iw9F)|L4Luk#>E}oW0=*>}Wh=C1OPSmXcJ4bZm6N2F0AFUOU zb<5JhHST;c;QS0xEO%9EHJo@+sc3hX)C<}5&cWpsjKVAT8{7ALVA;qP3^m+ zA=@dvaevt7Z=f^H+G6FB_ zVdV=q*VI*z3#(qeS&v5D%^{#>8wp?sEv@udhaS;(?MA~+~2WsTI3c+S;GE8Jfb2IW~%8!*bCLt z&co){@CJ86G5uG+w!SPqPE@Y1CBms21cF+ex+AN=269QH%qZhI+i}FT7BROHx{Zq| z#Sd`^Skc_r;PBVr@Wyj3k%Mim`1m6n4v&+kj#fHPf7(3qmTAew&)nJ18ND&lo@_rI zNg%m?ZnP^UH2tX#OZV6Kc~u=5S!ms#!;6+5k^s11uD!N5$1E!$`go{-Bu0nb?!vK^RA zzMA(NJ1RT1Cm7nm-j!DQX9UJ^2B6$cq0<_91E@2(dVNa|f1C%Svl;3rjJ+R!f!V&^ zk=P1!CsmsC)*np(Rr~yG9Zd-2Xx_hIj8V0L90rO)j=uKJdEO#ooPl-|;0G%Jxq#6zqhN=~Ht397A*05#hek(%GrLq_kNRD0WR4P2d6F>wRUp z9_);$wpL}%RXLw5?u<2K@bfG_J;;Uw}&12~O?FmWZ zYgPvx*r5`)`Cf-Xo4=hl+iJ{v!s8%)v8nI0Ht}t7nhVyT{sM}#^%Md@nZ+4HkFIro z@)3vn6PQ|5XWsN&wz-M%vgIhUc4XiAxxVKq5rwtloxT7MY!3ff{!wGiLvFARJ4qrP zl}QSsM(HJ6KJ$!+3wZj;fe~d?Ro%c^Ze3aewpi4v_5x}i@m|(OQ1nWf2$jaesP8<% zTj!iD_BxjKN$Z$KiiVuO^grJR<*2hAJ?>OdjUwN6j(ag%5M+SvZfEyu)4R#0fj%}PzjK_Mg^64E06 z(s>etuAn@xum)A=rKhDr0^$MI+bumog#-#mRq#f225A?jzofvVH^ni4Ey?ssbvv~` zNa6}HzYU6yAS&gcsm>M5S=R90t}7~v2~3vlu@CFEPSe)hY`v>PTCadIgwGZ$FetDo zSlJUaC?`lgO(C#_Up4mx&LCuVwlTB{JiF{;Z`tZ-FF4cRzB)IzH?w?}C5@d!9i!u; zU}mZx^8UcTWj|~8)B%pph4*nn1^2*{q~{RrvE0Y7XDHCQ`Nq0N0b1MhWf<+IO51v2 zRZuU&5`a18k`#DzmAIRUxSEv>1_T-Gijg$s-h_j76y%0PG4zG%od&z}c8Ct!5fg2$ zfhW4#{VJj*L?m(QTB0@#d}_~Wz$2t@t$k~pFj{mfj|%OxeXch{>tu$k`pq-2NVVC% z!A4WWSmL64xSHL;NsjFN3?08EJ7yvjEX&gj=+0+rUv2K`~0F~Cni=2A?#Mq{za^jUdaEL zb%U+^OTH2OWPWlG%EY_<`cZ#RixK5UO zQn%yDle}M^T}g)C5oc%eX`$wTAzr_|mf^zi*{%dmA;MfgkwXmn$X4iWgN~e$4P_zE zR(Rf~#}4Ba`TFivng0*kUG1Q(a=M+QTV><;{Gih&bs2?~19{$rz{hQCJ!eVdI&ru1 zn#%gD@~~E*o|p?o+sCSdwjgzZ2*hpJEdZ1s!!FsSFLn-r-eC+7POL>F5bHJ=$Sc7P z2I|b?$h1WAYXHL}u**f4g-Q))Opbv4MhgWJNYUh%nZ22g;YV}fJXMLXYZGYlV&c;5 z=o+0W1?I@autsLpK@6i};%fGNay?{PWs8%Gnvs};*i)Op5}|y$FwW$jF}8A^>XR(TZw<;wg<%nCwIr3&v&{g<>3H4NYq4 zg)mz2$<)a3W%Y?gaQXMRxS9_L}Bp|1dmWmutW$t&=e{g%2hO!GBu{Bh?j<(+LP;O#*5?bcV@~57DzJQ5Gbj z-1C^ou@ND%6%`v9A^W6+7437jwZ_UPqlFtK<_k(vdDscSHYHN4$W{=7?Ay1crZa@( zAL`R7<;yB^vbj|At7QsJgrA_^85}wk83Y_UB)B^yS8F9Om?%B(6In1*j>#*Mm*T4n zqlBZlA(nAo6!%z|u0?Z__5UTYBhy2<{dNOZ^W_Yp`4A;V_0EaUy2oA*@D5qhy*f~d;Yn*} zetHdjL&`@=k>unoL!_2u8QCjp{Z*WeRR6IDgfC)H64;F4{F|>xsDn?c6q7^q4~I{@ ziS93_M*3&s&aQQxB4))EwZ80nc@d&MJcYJ2EVhf&_lAO+p5=Ldj7;pekuU=6ns+Wk z4WHdWu#-O_3xb=kBdv=~ZN&}G3Z7=;eA(E1mo* zd-^$K^0v5DWCG+bJ<@ND9b}b^6Q75 zVwlg-JwaQWE{CYMYkgV62PFKo zAyz%K{U$*O6I>t5h->2kkmy0I-%1h88*e_xNLVumz;Gg)iXvEyVNl82{m9{l387@i zF)OcO8ovv7_9|qVZ#r3>07G@arw$-swf8E_m4SrR#@2HW>nmvP<)c64#JL(-NMltT z*0a{^WmgxHn*Nh|KCD5hM`l%(^qWtKdAv!FBo8sj#Q=slq8qlx$<(>UElZ1f_K9Zk zxSnInwK9`#0j78gw0A2C+pmqZQU7Ut-IGH4g|@nOW$p|xE=De6;M#eYE`2V*0*UTQ zx;QbK-n$;?V7}&T7GF}MPeQ*lu&6dR#_UNm=GUJPbWeC*z;r|(_&}21p^j^oR)##z z-&4o4+V=qfFB%A+i^Y3Fn}*zgX`7EvS8sD!yGeU`#y381KfsS+**V6p$d|p_IG!i7 zq;#`#O$m}Am@_{Iox2*%;-lWZ#-X4Rsph>}eUJLZg@(R&@wXVqJ5$i{LYtOzxq)Q> zn@o~4M;u^jxDYkE-(8+2>?-IXGDCZ9uETA>38SBWUXSPq$n}`k0(HU_3#z@}^`0%6 zyTcBoB6hod3m4SSaBm!7qUi#10Y#T)(!7c*w9n-8%Z3*Bx8YaykU{e8_YB9lnRe$N z2t2oaIzkFKN3%n?4|$qPw{oPf$k83PgspkIppn#GaR5(YruYwB%0323N~(^aP^v0Q zvdsar=37_Sy?Hfq~2mEEPlCS!frAxmEZr72Q#=qzfjl~>A+BPRhEQ6j>;0B*xBkDAzn z6t_i1(a&C~{x zo{w)Ut8tiwM8u&~gi)_vz9Abz(sgBaKeU@`scK1A& z8`&Wk?t^#ZXj|D!a6UWylUm)f3lO)vSEd3113*=t&H%dpgM=7hbICUlW)3(zG!W zZq5n&v*40%kdWJ4bI<+GvD0Jww%1Q?oe-}SIiz4%h+f@KlMfnDX6P`{yYN{5AXE92&?)I3@;MRhe zmR|b^fcQKEX|ebz>p#Bl=&WkLCUlG8y&d=#%g#_zQ06xx4AM`#zqtZ%#iEPGC<2C% ztip=WuHOkCNS=3H@>ivYOBWdI2}oJala>Uv0vO<%J%9)dC;W(QD7fV}H*~>nV6eST zD81dTP9=M*+J~(3=(;I7hJ0-ik8k#-PU@tU^+xo_-szl+mD&|l6imyApEiDH!TLO_ zN}-K@zVG*%AlQ>pAXjO}b74{rN8bhP^nG`8u*68(DAjQ))Gv8fwLvxIWs!7 zcG%n?^!L>8tx2a}zzCyL+f;0$T)$wqwcYQIvugf9tH)r~dVGt#Rfb!gl|Q`h%h=-j z!h^runrMXg;}-6SU`(rIYHBSk=`P}0e?K2x?pxb@+;?*eKhBav2`v{`hI(JzI#y`X z?-W-dp7R~w_q1Tko6*BZF;qz4`Q0B7JdM2`-yYSl>lO7?$71zG(rYo7&7v)V%Akyf z_KB}cA=FdB@}d`xA#6^#B$L0qUYIa8zPNq4egxRplV>}wD!sh*S3%QaA0N@@s2tMo z@m*3*)Ww4qV)5D&(*MBUd=2_EO4Woxuv$JoH9^!!t};2aid}WMF&p8{1-f`xIivdp zFM{o7NM^bK%6L>9-VQ1|I3?I%jrZYY$;RSq?auUKl|8NJ4qdo1s78TvBL=ZY@&i)8T#; zlGEOI0>3T$I^#3?xiOm5e2#3KTfI_UMd-MkYcn~}Q2XF+<*=(|9+S;HR}5O4r4dR# zIkfqB0v<-UzHzbkgOSO5PkC^6KoYJGqV|?4niOa>xd+GIdnRi_$=`}?9MC6kQH?*O zP@&@q;^SH9>Zseh(}7vqr4`;a_+4$P;u{J5Cf#~V_dvfp9>@k@LPFnT{ISP07i-od zSWu?S5VM*(!2UK>DS1bv0%S2GB(F`U}7tIPksG)+X^Z-R!i*|2CA#V zslCRB8mZ=3jw@K_6)hE^AJExsW%_@C0so*_{2vhGe|hVg!jHnsnm(Co+8P7=!fpeB z`roDL|FI`jbh9<0k1bq6BW$VXXe4N4U}I=R zBWYx9;%JIX&qDtn(56dGLjki5(R)WHuO(<5zu@BtSqLRC$hQ9qc-4}g0}eJDUIjg) zK1A{UW@cr6m0_59g0fZ-W?r=FTKT0!`9+m{I1O6Tv@g+c{&z8@0y}L{>b)uB0w6)K zSyh_7B*&PdF1u|pTZ6n_Hrou}6d)@ZY9$Z>ace)W2qrH<8vHOlqr5wDDlIXsDAKZc zahk0(LqRI|I>V%>pAhZ}*1+Jjn=wklpL>(|ibesUi4)^+6?D?#FoQ0;w*O z>hmzlx2ruNqR~|F6zI7fM$(vLx`HM|fqmkuK?d0Z5x=lK) z>(hwy+nA7W0b(Z#`R&x0J0(Ov%+XJV;2S1%GIU2|w2VHk~n( znTcJkHD8@cn_fB{|7vv6kbZ#aF3Z2h)JFpIW4Birf0>EelYlAk)>~{+TFIBQIC8 zKzBnQEMTlLz07knV_I=~JNm{b(Fh5fjp|H9Es2V$koIJ(c^bfdZAo>RI6 z8_@3l{q5k9_mMqOPP1m%@;%#=V{_T%S1ykfSO8Jx0yZy2eL_9Y=~a}^;iEMfBAD8P z8wZ)klB>K2?LN9TE&JZ;>mh^*Ce856x(0)ca7}p@2&1X%%KLf+r`yu$`dqq5VU@j}@TF1*$i!njI-vYF~oT>&Hnt;O3cYCJg=cy0Q=2Or1 z_x~&GOrxQ2)G+REoyEQk{&s`0n}*RCgh{kWmJ!)!7-J_(R3alHV~esSgX~L|Y!Mog zA&h-r3T00VQ&O&bzuogc=iYDcInR5ZFYlM%hvzx3Yn0!4b>7Y5KR&^lGeo%L4x=K- z?bv|dku}p*MT_C!c-;T9Qh^K{!z1O(est~qukdoa*pPwcTzeta%X0qxtOyT z5my*Sg36;w(hz#vaQ10*_PM05ZuO!e}EE3|EO%<^^m+hb6-fW5H z>jvO6DS%t&HwjYPuccsA)DwI1vQFYvKAD%8yejEjgvkU|25|E zeesj1cT;@DV^g!0q&@O!A6^ENY|kmGLd2HYE}Jw6p<>--te+?}xPR&XtcA#0$Y)Z_ zLq6@l(;5Wi{-98|!>-TIV(X_=q^Wv__il5`lATfjOD3$OD;U<9@Spt){D)l1Tzna) zktp$F({(#y9|X0{j5^{JmwDa|=01HcACndSB6ff%vl8$W6DQKNSqg8-YK2$jT=x?zO=Bx`m8%6t(S}KArc&FM>|)#2PlB24wCcy>Us{C( z5BRtVlvEQi#_+x-mkM1-O;EOIG!Ctv`C9X^izFMpAwqj?Y1FRGd?(i)B*0A~xF95$DCvHmiUMyR294X; z+uR((>Bh{7@%+-@kzr6)gFfo;Qj@3f=T#k?wM_Ue)tjZM zw$=jt^QPLfzO@p{ZAj8Y-Iq`Synqk4bq{#L0!vYt6s<$n?X2#Mt&9x}M`32tzj#JC zzRGF)9fR*Os1^xyM(#eQPVDx2uJ{#t-SK-5F3&F+=zja0{XC8e9fG8wbgM!S{{Dqr zJOHoVovQ8^9>TA}2Xp;{3T~7G8xm%$MP6xPp>Gr{P$LSIKt8c%_~s|$*wdG%G-7-^ zA6jthw*96Dc76@yxqfH9`pgjO&2#-AC zze}mDlv$TlLQ$bpL*8?Z%gq*n;Y%IiIj(0J!_14IbOkfJuE)O7<$+%6I4{XEZ%$-c zj;YcDH6`G%FxeRyhsJ$c_|=f|nUV9m^XmIesnrgnBNaLj84^Ku<|$~X@E1A;nE1S# zrYNe)bsE)7|DLzLazyDwHvFD!+h&aHx9~){SJ$~WNAf6>H^Nl%BJaHvcS&NWs9RQq z((wzh{u=vfd9@G@waGjBn-#Gxqtp;Oe$e)$-U8@&7P~`AGzC8&>hF^$IC2oKmVC|& zwTmnJOzG}_QP;pdz{DjHVwX13>7`$!P4Lr|pK* zLAb+DySo!mItY}OJAvS)jl{d*ai=tKnh4aH|G(j+VeNH`0MgOYuyr_fVvTV6UyQB& zUuds3)Mkz`5{!NSDmjeJ5^HQ}WX!tyQ6hqsA1tPFk>BmC8;)31oHQ$X5!4M9ku>za z0|JA^8fDmtguIUf2AZ^OKaZGbqGhhUrkvr&^V!CI+}C8=++(-XP&2R#L5A8i8Coi| z{<3mys^|b+*M{vv8kVnxF43ojf0`^QssMG*;7mJ(IM+*K&6bnt8D1dwltO=gIKMBk z;bZ!-JFP8vH71$*s0cenxtVc{#bKjt5>W@IoeX!Z8p*S{$`5*ryoHhiY&ZvDHq3)k z6Mydp*ocJ#Dkn$Kmc=8tt`^g4%IZ(voCg%7+pLYWTCUOeT`sLhmV?4Wbyt4B+m=!- fQy>556@x=?K_THm1P>5W6R86S$;+R+VgmXX_Qi*L literal 0 HcmV?d00001 diff --git a/os_exercises/ch7_exercises_solutions.rmd b/os_exercises/ch7_exercises_solutions.rmd new file mode 100644 index 0000000..89a5c46 --- /dev/null +++ b/os_exercises/ch7_exercises_solutions.rmd @@ -0,0 +1,97 @@ +--- +title: "Chapter 7 Textbook exercises" +subtitle: "Solutions to even-numbered questions \nStatistics and statistical programming \nNorthwestern University \nMTS + 525" +author: "Aaron Shaw" +date: "October 28, 2020" +output: + html_document: + toc: yes + toc_depth: 3 + toc_float: + collapsed: false + smooth_scroll: true + theme: readable + pdf_document: + toc: no + toc_depth: '3' + latex_engine: xelatex +header-includes: + - \newcommand{\lt}{<} + - \newcommand{\gt}{>} + - \renewcommand{\leq}{≤} + - \usepackage{lmodern} +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) + +``` + + +All exercises taken from the *OpenIntro Statistics* textbook, $4^{th}$ edition, Chapter 7. + +# 7.12 Lead exposure + +(a) The hypotheses can be written: +$$H_0~:~ \mu = 35$$ +$$H_A~:~ \mu \neq 35$$ +(b) The conditions we need to evaluate are *independence* of observations and *normality* of the distribution. More about each below: + **Indepdendence:** If the 52 officers represent a random sample, then independence would be satisfied. Unfortunately, we cannot check this and the assumption seems like a bit of a stretch. + **Normality:** There's no plot or summary information about the distribution, so it's hard to check whether this condition holds or not either. That said, with $n~\geq~30$ the distribution would need to be quite skewed for the t-test procedure to be biased or invalid, so this is probably not all that crucial/concerning. + +(c) The test statistic, degrees of freedom, and p-value can be calculated from the information provided: +$$T~=~ \frac{124.32-35}{\frac{37.74}{\sqrt{52}}}~\approx~17.07 $$ +$$df~=~ 52 - 1~=~51$$ +$$p = 2~\times~P(T_{51} \gt 17.07) \lt 0.001$$ +With the test statistic and the degrees of freedom, we could do that last bit in R: +```{r} +pt(17.07, 51, lower.tail=FALSE) +``` + +That's quite a small p-value! The hypothesis test suggests that we can reject $H_0$. Given that the observed difference of means ($124.32-35=89.32$) is large relative to the range and standard deviation of the distribution for the officers (and presumably even larger in reference to the distribution of the suburbanites or the pooled distribution of both groups), the data provides compelling evidence that the police officers have a higher lead concentration in their blood than the suburbanites. Further inferences, such as whether or not this difference can be attributed to the effect of the additional exposure experienced by the officers, would require additional data and some way to disentangle the causal effects of traffic enforcement from any other observed or unobserved differences between the officers and the suburbanites. + +# 7.24 Diamonds, Part I + +We want to test the following hypotheses: +$$H_0~:~\mu_{0.99}=\mu_{1}$$ +$$H_A~:~\mu_{0.99}\neq\mu_{1}$$ +To do so, we can use a two-sample t-test to compare the two sample means. The conditions we'd like to satisfy are independence and normality. Re: independence, the samples are random and not exhaustive of the populations (presumably less than 10% of all the diamonds of each carat rating on earth), so we should be good to go. Re: normality, visual inspection of the histograms presented in the textbook suggests that what skew may be present in either distribution is not extreme. + +Given that the conditions are met, here's how you could construct the test statistic $T$: + +$$T~=~\frac{Point~estimate~-~Null}{Standard~error_{difference}}$$ + +Plugging in formulas from the textbook this looks like: + +$$T~=~ \frac{(\overline{x}_1-\overline{x}_2)-(0)}{\sqrt{\frac{s^2_1}{n_1}+\frac{s^2_2}{n_2}}}$$ +Now, plug in values from the table provided in the question text: + +$$T~=~ \frac{(44.51-56.81)-(0)}{\sqrt{\frac{13.32^2}{23}+\frac{16.13^2}{23}}}$$ +Work that out and you should have $T~=~-2.82$. The degrees of freedom are estimated by the smaller of $n_1-1$ or $n_2-1$ (which are equal in this case), so $df~=~22$. Consulting the table of T-statistics from the back of the book, we find: +$$p_{value}=P(T_{22} \gt 2.82) \approx 0.01$$ +Or, you might calculate that in R: +```{r} +pt(-2.82, 22) ## lower.tail == TRUE since t* is negative +``` + +Assuming we're okay with a false positive rate of $p\leq0.05$, this provides support for the alternative hypothesis and we can reject the null of no difference between the average standardized prices of 0.99 and 1 carat diamonds. + +# 7.26 Diamonds, Part II + +To construct the confidence interval for the difference of means, I need to calculate the following: + +$$(\overline{x_1}-\overline{x_2})~\pm~t^*_{df}\sqrt{\frac{s^2_1}{n_1}+\frac{s^2_2}{n_2}}$$ +All of this is available from the table except the critical value $t^*_{df}$. To find that, I can either use the table in the textbook (and find that it is about 2.07) or calculate it directly in R using the `qt()` function. The degrees of freedom are approximated by the smaller value $n-1$ from either sample (in this case, both yield the same number: 22). + +```{r} +t.star <- qt(0.025, df=22, lower.tail=FALSE) + +diff.means <- 56.81-44.51 +se <- sqrt( ((16.13^2)/23) + ((13.32^2)/23) ) + +diff.means - (t.star*se) ## lower +diff.means + (t.star*se) ## upper +``` + +In words, I am 95% confident that the average difference between the standardized prices of 1 carat diamond and a 0.99 carat diamond falls between \$3.27 and \$21.33 (the 1 carat diamond costs more). \ No newline at end of file -- 2.39.5