From efa6913590499d105277c2907cde2a96aa7bd51f Mon Sep 17 00:00:00 2001 From: aaronshaw Date: Wed, 14 Oct 2020 10:07:39 -0500 Subject: [PATCH 1/1] ch 5 exercise solutions --- os_exercises/ch5_exercises_solutions.html | 1685 +++++++++++++++++++++ os_exercises/ch5_exercises_solutions.pdf | Bin 0 -> 43617 bytes os_exercises/ch5_exercises_solutions.rmd | 104 ++ 3 files changed, 1789 insertions(+) create mode 100644 os_exercises/ch5_exercises_solutions.html create mode 100644 os_exercises/ch5_exercises_solutions.pdf create mode 100644 os_exercises/ch5_exercises_solutions.rmd diff --git a/os_exercises/ch5_exercises_solutions.html b/os_exercises/ch5_exercises_solutions.html new file mode 100644 index 0000000..ef20494 --- /dev/null +++ b/os_exercises/ch5_exercises_solutions.html @@ -0,0 +1,1685 @@ + + + + + + + + + + + + + + + +Chapter 5 Textbook exercises + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+
+ +
+ + + + + + + +

All exercises taken from the OpenIntro Statistics textbook, \(4^{th}\) edition, Chapter 5.

+
+

5.4 Unexpected expenses

+
    +
  1. Adults in the United States.

  2. +
  3. The proportion of adults in the US who could not cover a \(\$400\) expense without borrowing money or going into debt.

  4. +
  5. \[\hat{p} = \frac{322}{765} = 0.421\]

  6. +
  7. The standard error (\(SE\)).

  8. +
  9. The formula for the standard error of a proportion can be used to do this: \[\begin{array}{l} +SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\\ +\phantom{SE} = \sqrt{\frac{0.421(1-0.421)}{765}}\\ +\phantom{SE} = 0.0179 +\end{array}\]

  10. +
  11. The standard error of a point estimate is analogous to a standard deviation of a distribution of a random variable, so the answer to this question is best understood in relation to the number of standard error units between the point estimate (\(42\%\)) and the news pundit’s baseline expectation (\(50\%\)). Since the difference is \(0.5 - 0.42 = 0.8\) and that is more than four times the standard error (\(0.0179\) from part e above), the news pundit should be quite surprised.

  12. +
  13. Note that this concerns the distinction between \(\hat{p}\) and \(p\). In this case, the two values are very close (\(0.42\) vs. \(0.40\)). The standard error does not change much: \[\begin{array}{l} +SE = \sqrt{\frac{p(1-p)}{n}}\\ +\phantom{SE} = \sqrt{\frac{0.40(1-0.40)}{765}}\\ +\phantom{SE} = 0.0177 +\end{array}\]

  14. +
+
+
+

5.8 Twitter users and news, Part I

+

The general formula for a confidence interval is \(point~estimate~±~z^*\times~SE\). Where \(z^*\) corresponds to the z-score for the desired value of \(\alpha\).

+

To estimate the interval from the data described in the question, identify the three different values. The point estimate is 45%, \(z^* = 2.58\) for a 99% confidence level (that’s the number of standard deviations around the mean that ensure that 99% of a Z-score distribution is included), and \(SE = 2.4\%\). With this we can plug and chug:

+

\[52\% ± 2.58 \times 2.4\%\] And that yields: \[95\% CI = (45.8\%, 58.2\%)\]

+

Which means that from this data we are 99% confident that between 45.8% and 58.2% U.S. adult Twitter users get some news through the site.

+
+
+

5.10 Twitter users and news, Part II

+
    +
  1. False. See the answer to exercise 5.8 above. With \(\alpha = 0.01\), we can consult the 99% confidence interval. It includes 50% but also goes lower. A null hypothesis of \(p=0.50\) would not be rejected at this level.

  2. +
  3. False. The standard error of the sample proportion does not contain any information about the proportion of the population included in the sample. It estimates the variability of the sample proportion.

  4. +
  5. False. All else being equal, increasing the sample size will decrease the standard error. Consider the general formula for a standard error: \(\frac{\sigma}{\sqrt{n}}\) or the formula for the standard error of a proportion: \(\sqrt{\frac{p(1-p)}{n}}\). A smaller value of \(n\) will result in a larger standard error.

  6. +
  7. False. All else being equal, a lower/smaller confidence interval will cover a narrower range. A higher/larger interval will cover a wider range. To confirm this, revisit the formula from the previous exercise and plug in the corresponding alpha value of .9, resulting in a \(z^*\) value of 1.28 (see the Z-score table in the back of OpenIntro and/or calculate this directly with the R command qnorm(0.9)).

  8. +
+
+
+

5.17 Online communication

+

Key points here: (1) The hypotheses should be about the population proportion (p), not the sample proportion. (2) The null hypothesis should have an equal sign. (3) The alternative hypothesis should have a not-equals sign and reference the null value rather than the observed sample proportion.

+

The correct way to set up these hypotheses is: \[H_0~:~p = 0.6\] \[H_A~:~p \neq 0.6\]

+
+
+

5.30 True or false

+
    +
  1. True. See 5.10 part d above.

  2. +
  3. False. The alpha value (significance level) is the probability of Type 1 Error, so reducing the one reduces the other.

  4. +
  5. False. Failure to reject the null (\(H_0\)) is evidence that we cannot conclude that the true value is different from the null. This is very different from evidence that the null hypothesis is true.

  6. +
  7. True. We’ll revisit this in a moment below, but consider the relationship between a statistical test, the standard error, and the sample size as a sample size grows infinitely large. Given the formula for a standard error, the standard error of arbitrarily large samples approaches zero, resulting in arbitrarily precise point estimates that will result in rejecting the null hypothesis for any value of a test statistic for any critical value of \(\alpha\).

  8. +
+
+
+

5.35 Practical vs. statistical significance

+

True. If the sample size gets ever larger, then the standard error will become ever smaller. Eventually, when the sample size is large enough and the standard error is tiny, we can find statistically significant yet very small differences between the null value and point estimate (assuming they are not exactly equal).

+
+
+

5.36 Same observation, different sample size

+

As the sample size increases the standard error will decrease, the sample statistic (a Z-score comparing the point estimate against the null hypothesis in all of the examples developed in this chapter) will increase, and the resulting p-value will decrease.

+
+ + + +
+
+ +
+ + + + + + + + + + + + + + + + diff --git a/os_exercises/ch5_exercises_solutions.pdf b/os_exercises/ch5_exercises_solutions.pdf new file mode 100644 index 0000000000000000000000000000000000000000..67775c9fc1ebad167a28158e18cd703e109a4156 GIT binary patch literal 43617 zcmb5UQ;=xewggzU%eHOXwryAKvTfV8ZQHhO+qSFvyommIH{Oko(?2U_tdIGTV?>V3 z9Fs&|Sd@l=mIadJ=T;vp=x-6})MvdRER(gFgtB zE*@7nk}2u6IpDU^G;^Yx)#$sGZ}+BN<~s8alNRvT;^t`X+qKx&*U$NL?R97C^(Nkw zNx`4P?H8BLC>BbrHQAlAqQMuJ@8`&syPD>1b8FtF7un0Wd#*i|Tsc*snY!>>LC(>) zV%}J5+OJk=z1*-dE3zNXY$XXd{?$hg1)}s{QaHTAlro zg0EuP)@i?BNTaE7@}wZN$_6Px?+m$^6K6$Gj*<+1+X4+@`>xDWUQIpK;+pD8);O0J z#oNg!sZVCpHL3ZHgvESwoXnM*!kW@%5@wra1%wL~j{xtGnB!ktAQeEB#-H%pZBU{vJ@fioEfUDkz-(;4~9 zalnAnT3fmL&6Gy;U^ZF@827;k2`51@AXqpO{4!`;H`f(6vR9;*?GOF=-1==h5&$q=F* z+5t;Z1_fMx7i^pD@rNCIW!ESwsT3uuHkmM;rHx~(^ZYVtQRtvOmA~MxJ?l6*hywMc zhq568WhL9Ba%g9=G!K3}R~~b>1DRsLlrk@?rJZiZL5ZFB{HJ*VBE$hkD55cSSXY-W za)RK1odh$t068s{xqn125&WBi5*wqb{j9V<>Zh)KsCP;ER^nqp$3;|wKDx5L9?h{O=Fc8%1*o7h1)++i1nK~g zf^l792?$SGtE)W2X|qe;tPbF(C0H|!>40)0^9b&)5*D5ii>DD`iz-*gsN3pN6;JHd zCc~@>pt#x4ELnRdnO{qmMxps{=dBR-b=7Upb4Wv7lqb zL0C<#62dFQq=XoFaJ{z4j4X&15SD};wf5TUH8a)}ErjvowesB~yMri)+|S`{(g8`3 zJ%1QPmZ7}&VMzCd;P?OCVP00O62Je-GZ=Rn?oqso>!rAOsusa7hpgoXEs+{>fJkmK zq!S#WHVTMB1a63^dOjvk00n))lzIJYCD)~wHNc_d8SV4fR(S&>UhAjYRqJ|vc&2{ghWTrgM#wtmv3`^1?F#a~e>Szo`Rm6I92b?sO45bhxIme{_!7j}-iHVv== zmB*crpj7h@?~Tj>RU>{t67-u>dih1pcimC7tW#=Qu-5lIyZ==bpo$hXb|4Ho%{p@$ z7zg2HBB!^9-d0Psb_RbOXMP(pZmUL(oOg|a)$=0vazA}HH04aJYowh}h=lPz>apRa zDmAB&7hC@_>^0cp=qTXjsNTAW5~LPswE#KiT~NvfWK`+m0}(1GER;qw>#JBWi^A%`A(!6ul`N*ixl!}GT6*)XJIWIr9CeQEd(qB1RM1`Sz= zrt3`#w5VG@3-eMy8qr~apQ$`DGYadsxwQ~NTCS|Is#feAaWa9gwIEjxi~?UIV~npl zk+Y2w1o7nHpw)lZKLW655GoBK%btBA^Ce5b@t1IA3-DFr#xN#ob;eQ{^FTyr`tmNM zDCVPwOaf53V`}`QSkhcsS7!G$3G<{Hr^yt05luh{T24lz6Y{4D)Q^h=!1~Kzcb#G@ z5n0ZI-Hj2hA!d}5NZBl7T-272Yp&&yHx||jsi^`vT1>q;A*4LH0k%?-fnqAXK+%YZ z%wcJ8A!bL#-${-lLs*yvEJJHgg9STNfWDx_Ra0kWiK_&sv;n%IVqk(UuYS?Bkdih3 zIIZ+ck@76D7Q6clQX)P7Hs*AYapQIkLs+jYQIpyKyynolV?-51i>#_0c5LI0foM>jDt{~H0t#LUR> zzXjAZR(lL}JI$-w5?qt&Dx-?&H-g)<;~qZbHuKB?}wi^eI*`qK(8H6 zPMGIYwn>&dOT*20DKY16#j0=5xAo`b<_lK7J}a=c=guhu8%? z$os|DB(w%;_l)q{vD&Eos$@hS5x0@(CPiLj!`m^K*ZdpFz$tAuD~fn2_16NsqA4Ha z)N!kKcYB)dQRn);R=}$rXLDq?c)xHLJL!JlX4D;JQs?frAz&Wbh?^T$%gj%iD?0?Z zN814J&ZX*46(?jhrbS;`oeW_iu!yaenTcu=gM{!NB;gby1XY59B{n<006PXK_J)ut zZ!!w<8+)FfkJ7=PBR^``biTXd>;kpv+aI&LUFj!6($?)H#PN0y6@Z(@21uw**2e@6 zyP|a28ls`_9N_jp*&s}{{4SWu^_-yH{r0|7G=ZUj2Tjfy^c@bGE)Za;AtI>yc5 z2=g#^uq6;TmegoHJ5^I>Ds>3u)U2M%2;~4~OiFf1lVgp9CdJjlL+f95pC8Iv5E8A0 zd#TP@U2ozV!F#T8oH%-%)nIe70) z!rTO1jueM%bLEyb_c|m()mOwkU&m$A^ESxeYxo zcGPL=sF$WI3AgvPO`{|=p6{}9vf?koT}`O_?G6%6XG#yDAWJUeJurBTU6DH8#mvjg zc)<4_nx6Kw2|3-G_!4h+wqh$BlH@H6x&<^!sFjyh$p6ltiKAeWV45o5NVDi&?boV_ zhEbEUgc8Pv+U0*eLL#aV8n1GrSmHk zZw>8Q-QW7;>7BOovkTi3z{^IUFYNtstFD0J|0#2yTEeY|%6P*TQ%+9)Xj#6qpuhjf zOGuO49G8a0wPvVZRsm*bJWYM3|EXt89R~-}ot6poMI<^0*9!;S&@9xQy;1vNwT$MB zm0e=?6&=FbIaf-9uHG;ehMm&<`lDAJPJ2X-JB{H%;G0Wcz615vm-PZ@i_Xjl+~Ch9 zBlM32p>#VM2A8P#L7~rm@F!2cs48!~m8vR4X7sPKB-)d6E>S*(*I`jP!Lx;P&~qQ# zL^1!GFhyTwrG296&5wfZI&c4Av_8$F`EpL1zc%KuhI!pf?z7to%9~T?iJFt8-%BCMePe%Z=Ly_8J9&GccZnHkei3Y^z;*?f`RIijC)mp|c%)dSACb=s2H=CD zBu`*2sPz})`dz}n%%X=L8WD=}wRYiijI&t+#p6(tcK%fjW$vVRFN)+wo49BX>N99< z;9Z<_`7l{5KYwY7AW@D8nf#JH02@V_Pt6Qz2;u%_+0Y}fCidQKD;dS&$ zdkG^CRLMnY+{LcyX9+7(Yug$3T12){V~M{9Q0mnf$H!aqy4q1$OiP-8D2M|7z|F_J zBmkQ~pM6pQ+GDO*m4!I{j#FD$&(y3#%`j>X>WO~%~(jTwq_!`r4khhNu_gd`(GqzWP z)45|}o|ZU=%qsGGNwAA8-&O&a;35T?HtLEaoE|zo+dN1edpsI}P&tAJmgLzbUY-=* z^0Jna&BbxYS)cEZP9Q_8-R->~H*A+o{#c}z@wRryH{F>;lFR}5B3EyLEU&h)ENV@8 zfOyDuuqXI=)c$Hp0Viaq=M_Cj?Q0(TF{WX_btosPD!hxa3Oc2X(N1FI9Qq@p?a~w8 z5bvb%3di9YZ!-he%5CYE!07Noyu0%CwS&+;vIHf*<}C$It5OOlwLC6Sy(>l+ zc52j^kbO&vvrpicAF!bzEDd@4C09m-f4P9%j6`tFXIB|g5NuQQr~A8GOk|M6yAoAlh5c5jV;|QJ?mnXk zB*R$y;@e3EgR{5v8pP7d!fyY7QU*(8E)D92kY~=*&fWLoIEKvoC*WgfA@!T)o6~+I zwP}~}5$Hn$*qD_BS+wyuen)NUFHKjQNHVA>qbAI(5zkO)|5N^=X@hE{(c=U#Zbgaf zhU3GSm)kq66LqhgO({?qO0}z<*H;z_4f`-f@c%tNLqz zhNTv#jX2ho&UQlc^>Mdt%0&TcAKrFpFWsK3Alaz)i^S>)lv}^!*e3d5HpHUh`t+gA zc(u3axe|}nR6FiZz^D!O(3DBtaBS`7!G0W-R@Gk@#*vw^Up)e;=&`0oTd(qc~8@heVvpa&frLr zezt|1sA%i)WnL}E7ZU-P$%al#i?s~qVq5)vo1}E6slsr_})bKcz4?8q+M4QR)jcs^r`C7s0jDx^`BhTgaH%uMejhExt zoE=o~8^SO7T)|5ozl<-%voys($u=Z%4jPiyO9SPq1#_(D72Z*#5NSIfW^yQ>QGj9k zB~y%1=pm7of6G2Wy8`Qrd}7Rx(o)10y3yl5Hz0p%F3%T|NYr3BWFgtm8fzpQIvBj5 zG>E3}df>eO9y11TJn%Ju*;VPUCPkl_O;fZ*Tp3!3RE%?T6S-*)Phy|g%W|%sWRPyACm%jv z^vQIj5K=6Tw>Bax%b*f89&Op8V75}L2)zOHYjchAsod7@Df*#mA$xUMi=b=hF)*52 z9cLkID%Rw;fK`4{$-L)R`bY*ru><1tXVAN7-l8!sGG3 zWv+GrFqTyRXtb$HBu013@ozfU#bbIkhl#~l*0?S}9`Dia47<2Umnu|eh)zTbZhQ!4 zd1)$Xn6Ex@jU#H~fB(ijHpxjNTH9KcoYM8hU+WQoeP29M@9587ju_So#`}@KrfuT1 zO*P*R(Z8WF;#nX=d4Bw}<}5BfbH^{(e&Kl@hi5CMc~p^$i~Xs}cQIV01ju}nS$?u{ zn8W4vR57}phP2y|ww%IQCc$ zcIQZge@K8n9pm@-!D0J*HvE-eUlM*icczGS+D`dd<$MU0P7cR?y(qU5Gb&WWs6b#E z(mql5LY>oeLYdRV5y+2#%oe+zx9wgiu6BOhve?k67tA{D7xp}7@}@>F)Sx0@x0V8f z5fBBT)LU^)r}8EPXli5z>tL$5DN+-FPgf)P@JPM_}C1{!)~(`3#DN zESg5|!8pkX*F8zeZRT!GpWhVwR&z16V^v}{X`YEjnVj$7XNXUWq690z`KW>6oQv%- zM|>e%MVR89rQZrsmk#7&-vQ`*LDnghExbe{_Z@U z-m4nVVX<$c%rvg1J(<*Rk_Ce#JH)_A{cc6`&Z=)6>($S-+%JgpNN2=npRnTcT%*7?qs}SqP42i*Q%|a9V?$Moqgzi|SMY>K%EaS@sdH zVKp>+ZGdmZ(!uCCXCdI3@h!i#&L^Ua-3-qql zwQ?MGHI%TgOd1JX426ZUh{8bqv9m0EBp;(jowFQVLYWz6dJcEc*R6<(b!NpSQ<0ur zM!ACtgZYOZe-8$SAl5)r!9AblK|n~|4guVR88lEx2Ce$^2%Ae6J2(X&^H@E2w=wQ$ z9Y6%HslDoisESpsJ@uU=AlZNt&!Z19;gAv&71Uy0sEa2R1=hHKVB=MsV4Vk<=~-6J zlCy}M$1P=%kUw5p78&kL(5=>#iZd9;D+n?urc}owZTB5{rN$A0y5~q5M=lFOv^JUg zOD}nX>J8L?cSH7!{*Y_2I;iVvO^}vl6I9T-O7@vqyC2RngjuOSBy>yR50Q&joECne zaEuC>y(l4V9dq>hb#AlUYbeSim-FS~bvQCm*aSPa%_3&#v7LUv!z1U zvZEm`GbUDd_H#+clPj!w=w3Kg5WXpMi?I~kyAa)avMvlM&~Lb8-DU$$9cT!uW&0g5 zor4U2vBI=7WxCyhUTK52O;Oi(_nA@=DX$HgLIzE&a#+I&Od^WN93$O1TbTu7=%5Tx zHC7ryswfej`Qec=m=i|9OOkM0mK6$;6e%AWNxL5DoSCl|t*p1q&3Bqf3q4!VM1W$E zk8>=Afy*;ZhgR8CCeS=FS=r>Tf(G2xO+!x9E~gSf(dw#5crw3=W7MQzK%dg5+LAF5&7P&0mzpvTvx z1%n&ZTFj0YUBf8jLeonY$XA-@rLQT8p(b`fQrg&ULe2>jo=U7B@ zaN4&8mES4qJ&c%?!kK0U(@W?SUR*afN_xATrfa?f3E#SIt!iuT1bHV4ykE2^&(_Pa zuXuwvL~HhbygNTv@qU4T=&POnFVQmpE23p$_>WzpPJ)c(AU$-*?K=vuOH@KF>p4E~ zMp9j0M|6p?>8e5lzabVG$J6d?iXa@*+MW6Wl}3Y}@~Gqs(qnHlB8zm@wXxw}Vrc7Q=+FkRHOVi@=+5SYRIF26)D<4^1bSEGVPS-MTyrEO zoH0>kF=4F&9K|kqi58p%lY1{B$uL;)&A2k+4g6w2MMQW78i?|uB%XXP);=QhCWPY1 z30SPUuBGOI={pWV1}sCYh`*O9A5#d>jJx9z}|q&t^ZO3_J1?%m^hgJ_pH-N zw6zSRhacJfq)EILzRC!zRBs-rgcdu zZNDNl@vY3KG&7JPvlNNdS4FAEYR+!bj$PJa!C3gMpc9*vg*|qo_B43u8IvtNygc3K zekykAzE0nG*R8mIPG}EUUh4aNzz%m0d2DjyCB1N5ho+989=Rf^@|3<9XZ`eOo1g4> zEw)h1wpu^QK=vq28@-q184u@B#kS-?J5~{riLI{^Pi`Qga!5gGB-c{4im&=zZ;!3h zQu&lBaEBfEwnf^XNK8_{s9AbhLrb%_5pR!XA1JdHih$&$p;b)foBCwhWAF0hnPbH zOrC?UfSpS{Cf_gt&)6!b(uPwQ=l0?m%M9?n*o ztc;qc>v?UD!^PQ*3>ry!MWzKZO8M}~9WTnq{o{3^?Idk@F7MX+ zht5Z7?JOZfg$r2$pKYL0`JInzn~vz}O{Y?=YNdGjaMFslsIL-SW(Qx#sQYzmZMJPk zqsQ9@?!d%8C-iQO^LE*RSvTx4;*pB?HLZ{ahn|ZmTJ^!XMx_b^&*hl&v+wP5LepXS zhtdZJw|n})A-mj)e~UkKl8HQ|b=VaCLlnIGI_L&S1}YGW@QHsz5GAIhJDG6r6$Ya) z<`^QylXTG$4Z%4+Ck-)YurL(P19~=>coGeP0%?-al`SG3p&q^yCP5O$OOBN5xu4WK zRgjeESu)R@T;VV>ye4Bw!MuSXI1L5Yf|*1yWKMBgkwVIXT;Y_YjMu#M#$F_fV5G?c zD2=N4NB-iR02A1tauvMNIC1Pvx>Fxov}_<9YC}PAyVm>wbF~=)qMqGA!PG&}FvRp1 zHD`647tfnH+e7wtFH7fVD`Ex7ur^n8qA|OHL(0h@>n`G}R6&OaAI`d6a?s>o-d35@ zo7U+$I7ijDZxAOaB;fzsH!Sr3rf-<&+5dwD<`w>j1pxM3eTR8mq6`eG72)+8sm3;( zE3bDJkFJ6;g3RzfZc91Ng@7RS98!-Q^c8BPwx8gAxQM8(@@<+N*3vT*!A-lEIrk9C zL|+oW^jZc$_3M#dq?*9@Z%Pq$ww+V$4C!L*d zJ*=d3u*Mny@VTKqUAsF6uVm7hdZHXXOXpZV{xm8nyr*B7T%%|$@zmkZe!FDZkVOy7 zK!(enL4jgmiNda%pu78N@>D;jEzC53A=yBm4#Ur=4?HT&bD8fqhlxworg;uiEi|#3 z%Y58vGDd90k<+CkdlpYo<&QBFDjX%q%AEx{EkykD3&Q+3GOGe(5@+-2ETM~ojXUGE z*mm^IA$mltv%20e<@X2BN+$*4zW~qhZ-8fE_z(K^PMVC#q(=^Uk@KXmNMi!>O9sarL0-ivZHf*cOd$htny%#Dn z$Ufi>lc_RA8={en(xT6^$axP4(g*_scdek%3;$GweDlm{h%gii52C)bDelt9Wx=Eb?*WS$frT9y3aROEMYhmLo= z62(2FP>M69W%=-fEaNy;FGZYb!<&qM;Ey7aYDuOQP>^zcQZ9_UcFHUn{p${uk?Hs& zI}i!j>fMo+%`#cY_%wJFu!~p8NgD89x`^@LbP@A^8djae&4>Yd_>kLAK-S9W``gSiqL&+gZJhg+kn&0eDDQzyjirfY16CchD&zz^k@BnyZ zKh`|>Bn?PK`IyErMRY#{c;x{Q@qOt4RCdEjk}#FE+y>5+r7!BV3}3`+(xH1cQKHfDFV8NR@=SClV&7%A0$tl_eBVIRmMc2qOU7g*m2$38CdHziAWHQe`dmfrcxY~`2M#-{2a9wwG$ zX2@EJGTf1&iLj5kU!ROb-Yb0n+3&9t#G41|RT;SbQl^GJ z+zL^u&}@t>Ve)z#r#>S2=quBQR;yr`fo+AgL^FhegQu57Z@wP9SW&E*6g_n~wf&UT zNB_~hx`Ly}X+mM9Qw{q|4=YC<4Dkd2eC)}L8do;;E^?)V!J|(*NS#7Ub#0g6SLDEE zH7kYJz5wRuYxeR)QGL^3VKS#^fdNq|0*+IC(V**Wb5{6#7?$`hJL~cEG&bTwp5h;Mp*3ykG$%nq9plk}oj`E1!2{#p2#?I(y03_%{>B~Di{kVEx09Inq@jb^@Z(U=Y70_pc(Y*sB*x=w? zc3U`@ub3S|O$0D+tcsi6J$RyXhMMbjy9wE(_*`cm!Rd4{o`wZmhAp3PDnP5-Wlv+r z993vsA(k-T?l3md?hqjP<>{-_vJvykcv-5K;GVJYMDv=oz~4zcXH)Ey@09O7r-SkZ z$D1lf?bYD&f-wLE;nt|QPo!5Ey$g8?XSwb^_+NnhUvEW~oDH1Z?TqP!B!oq6ZJd<< zInxXMf4?C84}85C*dIi#6=!fe=1;)?wE5x9 z_Wm(Kmec2^IT#1e2|pqWi&sN+mnHQ<4g469GWoeIKSF^q(`fhJ0Br)OWo5AN z;K(v83WJ0-NiP~5GM^#ck$!(q>ZprtIToo$H^nf5_QO4nj;D*(`S-pcYON{h=shxJ zI+iIpBkj4$U%^tk;!DtQ>oE$gK7>$(fRy{Np6_pBJ;fUHm5dcDE1Z@eO+RCu6*btR z!Fw8oB0KXwMqo4qUM{+0Bz?RBGd2U+fxVIa5lFqNm+nK)QB{+$2bSCr!WP!F=`{zO zBd9G1(fhG0aw)acy$GkJJM3FoZUDm@NuA!Z*tJgXc9L9AH#3j%H?ElXB<=3a%z|~M zRkLhqcF&p%VOuV@52Gb$c5v_MTcfjvf^x=6gJfaWbF%y05&!GC3*}@tS8J{n*3)ma zs8TFd!a^gXYB?PC<|3n8N$5x2Wl`xU4$Aar6`+qMKm*tj9H=U6e+R(C0Lg-M$;=axs6pnNe{(;R56; zOD;tom6ktOSx~wg{L=eonWJ}USM^cO?c^LH=ZCo<#;X$~8RrXw?H0znGVmmdOkd+N zdDC*`%W;FG8?6eAZGvECS3YyeX}`2ixufO|K;PKoxda(u=(6-Yx&-t%`T z_jh$l#7^L{s)iV-(`&pz6hL&(9*RAhe}?%dxmE0?7?G)|wWN98o zD+>-KpY#qEJ1*or?_PDjAC9{9l8LqKFl7R~p~xlobviSGzlz5-0D1U6$Dd(IGbi9y zzYWsb&F#J7n3tzkT(Z|)=E8N5zY_DBoTGU=X)+~Uj#o%fGEFd?JiMWyR_9h{HbaCY28c2SFXaeSCT7Xk;MdWaf-QE zG1-zcqN_7EI9-}rl;*oc);Kc)N%p&Nq5D1n^G~YkUNa^}eh4wg^*e^nYpQFNe!fr6 z;XJ#uEU`mZ*RuU)oFvz*_EzRSwr;H&Y!p(gs6mqWbtDH;4~KSs(|yU-*MALu5Z;m_ zW9N({8jH=P+7}G!)wpAI_QF}l$UubuU3LZ>f*7}2S2t`Hgn55L zuC%kplQX)GCk%~Z39&p4Ke%XRl2jBIY-g1!W2BCfq3C`r2qGZ(aM@{qAZYn2T0z^` zb6j@Qrp`(stke)8ZqIywC>;g%Bl*H?((dIP=y=G&%4rj(l>+A$uK_?6RA_pX&_T1_~=`N3U=;uJa{Ya7hNH(Y(HG zT@;Tv(+O4hg3FD524`v2BUC^IY?FvjM>uhNr(&(3SwU%8S>9f6%dg#_@)qotJS`)` zrHyPKG>9`|^%vh6q|X{vHOs68#d!{1ERonIv~{GWiG(3ptIT8vnL}J}? zz#A$Px5v|)mJaIfF@xap5v*uQ+#Zw)3(%;rExuo2Q-?Nn_1I-~^_g|TsQ<5HcBihL zVeBZ?=X5Wi+khA4e^FEaDyU`rkD$Qv@83OmdU-QtgS)@#c78wrD8@kC|MzOv|CRpy z{}pOX9IXH0II7j5l#y0Da^Ms4Bh2Xxxmkrw#j1HkK!EX7HmN9A$P5JTXvT=Rff2?3 z5KumZ1ZDHP^$unN3&Yn*(kRa@P-<2-M~rI9dGd@Z(Jbd|=pN#ap`@t5j$i}emiO& zzg1k1h{ZfYEX3>~$PV3t^LI&dlaRW({2I12??=e5pV*~q<5aJBbkOK_EomXts)&k- zmKWzlqS0v>an&Z(I40UaKtw8-DKpG3z`M6OMP@o>W-h7a@85_@>8Xts=Qotat$~*l z3S#1K(#R-}CsCRgDaNDMI@l+I3X4=0VFojbPUs{zsB45tqSDGFg-#|ZIwwhYFxZLt zIRy&VqgkT-MsBzJalGAzjCM>)mr87SY>D+y4#ZhF>WwS0oM zeOSHtY`Tta+FTelGYjS?g-k9H%-2)4>Zx8;%8vvOA#MpE%?xoH5bR5~A>|A~9>@$t zstZ*Su_9=NRR_V7@yl zo;iy-0HnxpOG2m+TTOdv$og0!tM7zezZ*-yaK{+NRvcPJn656Peuc|PU(xtX&#npwWkF1yRK&U@ zXsE%mxa>5tA=mny76If39$LzVf0-%-(>0@j>=Zjo%fC2Gq9LCeUn;fCaESzT_{V%# zCD05(^Le@4|K?F_5KF)U7+Pf++s1-fO|!P=`-k!?V3YeQ$kgXD0NBh0%YhoO00OaA zLeSrk`$%V0tkYpQHNj)xcsv~9{$!}7qJdC}ATifA2p&_(fmjQv1q|=6gR}dGwnPlY zs4}AmQhef+nTPtRgv}hj7%X-+ML|scah5Wx3FIiJFYd;gi z^BBl_bPfi+S^x}j!Bw+-YQmU&wnBycJ1!?6QnA@-^utaF?40iECNIC<1vIB3Css_8zO7D&{^CnwHXb4A#1{gExq95 zt3TX5G`02vr4PjH&*h&XvBgh#1-O>{b%QJdVcg+YOPZ%$$oniaAb67IkzKrw*sn|Y zw&w4if@c21C-2L|l~UL8^uQ`OPJGeDT`%rcKJ{|(zw+o3-TXyaH&axF@p~iP6MwoX zu;g8Ur-Cusqbx>wb^ge#BW1p>qL2Yi)bdj4f#nk;ncxAs`7I4xIVASW>rP}fWLab8 zfoZ+q(t@(=hjcTBLw`^OpjZ6-H8N;pOxx)yzICLT%Y=NCc9O9?hmdk;R?Lh;==oCG z^Z<^=_9>tc?$2=^c zG-?_xiLU(SB9deRcqXTLE>p#&y}wjOJ*5YW!3okcd7!|htmdY*rADKUP< zZHs!D4ltn+r<$O!rTmRrhocJO3TGa$rYsb-C|kpmuIN{Wob=bSzHp|@P5m{#5XX= zc*CjvzJXeO_EopKI=9iM#FE@|{=h}-E9QUVY?76nr#u}J*A~!ME1O-{lnwVxs-uC! z$9upsQ@}IzIQoPtJU7?_~O!$E3+Jx7p9Y0AZdQbJ|z-nGF9+da}Bj4y+w;Q>sY?4e!!N8kOP+vT~wKOCR z%R`%{&1f6M84lf;qmM%-ez9RoH?;t_dDa40)(U_?ncdmy-k)Yur+LlAL z-WsGoc=a))T&VNWyNLtejMhzb?wcuB2cePY8-g7dNnL-aF1}X&IIue(c=@Q(lI*+O z;;*^m?<=L-U6k@E=}KWZUyr$0&6?x|l8Ycn^%_Jp1ivhAz~}K_1E%oYy6J$3C~hIb zXr1GM#cBFV6zQk92j77bl)7jmd(x%UqK1TUutp_G75xyWUE_(EMvp=ZG_&k4Jad}0b7_$b$7O>V}FmX+vtP8zZ(Qy!o>L=mW z0J&&045_T;Pzeb#SYL1)47wzT6zsGHd`xl=_#2{Pz$DR+>OdOV#9`$)6Vse0Cy7TpqRWt)%T? z{@9*LKk}pXZTdi=fu7Z{i&CjoriY2A-;iHF&j{7*vFrXGPIKMTZVt<64NKfw*jCGU z$cZ`JV)qJ73-i?{wbAT2*tKu*aAb}Pc@Y>7C+sF<9CMq>ROhZ!_em;hU=lPNXZKV= z;lnvpz4l)l5KU42Wps=+8kIVVHeYsjMybx)NUS=n3NCTdq2*2)#(qH2 z-e_&-P8<1B$$5NT2F`^B%HGe$$TjC;nk`i};mT5J1-pr>T5tCenQLiS^u*|OY-fAm z#D0iaY}d>Ib!-9vvv1}uZJPT_O=rN#iyGt{E$k~p^w}93ha;w7u7UVaC8E;Y6~kL} zeOQQxK!VHZ#9bH^ZWT+nrF{dh)>iXiDB=0-=_}eL*s4yHXigsRuJkuo)?iv%c52KZ z!_W}Q(2SeN!I2*`>LTXPC<}#9;TDcqp_>Y-Zx;ceOU1uy?lQKq8z}8+yVwjE{E$MD^?syqz8} zypZj}hBnb_8v6oyS9T`+?=T_J6uzj!dscnR!{JF98Q7&+?MLcvyPJC8_()sFl!Lna zXXDPCsUYxu-DC(37_juZB#9DtRP3mfu#e2znMDFZYu_vWgM*^|23^%O!m z|N19MBDTIx4<+pk;y}wb|0a;^QW(my>4lC^{2ehbCv<(Bgq?3^pAZEB< zYHh?{>C{p5*U_JIxJmOofE}<|K`|C>#an-9v=(V;*?D5cIzNsZ+EW- z;DM}6tNd-04@2X=BpshJ@kZ=R6FTAPfGkKe z>bRyC{zu|E9&CCxtt+tNb_Qbr4*R~g7~;w(T83k_%s!;0Z(vubm^A4Q#187-vMK<4 z#BFPI4#TSbI)|7JmU7ReXRKtc?5Wm08fB+QhYu7Hh9}C+GqPtAi|S}X*e5S5MEP0+ zUNF*5L{tF?l(_|nODj9X7l#M+zn=PS>|`x}@KYf=_c-KpGv6Jy_T4n#aWb``0I#Ue zl9)-<%rGi0>=Zk+T^J4S2FicpQTk}gys=1$p(0kCt4+H+YRYHke;Mp-)*w4#^N1ZtUU zvNlORiN)p_v@8(lFp9jP#cHK`g4ing3~E-q=6o`4a8>D;0wI0hRz$Q zQ3CLHn!GRWoh2(wyDQ@gn%Z>7q#NPn*?RzRO0`OL{vXQTsY$eGTenQxwr$(CZQHhO z+r~=Uwrv|LZPto<+9&R=8+HD`9P@4T@uBrhJ2ni?a!MKo4DV_jTx>1s*w8Yc;)a6y zen&8Go71=3VSjL9JOBTZu4DWEWePL>j}Y@e!5{$vK{cb@U=BJE+#QV*0Dxi`%<#WR z2LEA_{cj}$HWpTv|MbpcH6b;S*EaJI$bzFPVl1y>+{s#7Z=mU1>w>(ii-71*O<|+2 z2@O#pqzNV@2k{bk5zxRvL>%<%Z=heRT56+r7D>9u+-X0>1!6MYfsmdS5Wz^jFRQreKK-xa_2 z0f>j0GvuM(H{;SHKN?>zaK{~f$G!O4o%dVlyfP2|1{oGT84i}?vIT+1*+cy@_Qo08 zhI@{+F%H5Z8_up@VMND{`1OB?xcRqdTN|YG`M4JFC}CE~CU?lD_S~W)prPVpqftFZ!=&`^tG2pT+32ctJFuv*@lh$A(!<|F!zYP? zPVk&)n^b9Z5UHX4iBJ+9lgprbgn^7r9TBG-G#P9Y!lQeQP6eM-NepxfmBA!RuX%d7 zOR0&7Qkh&00UIYaK53*>Hfhx8&_OFw5u3|rldXix!zzWyLnF~a=BD-8FIu;3-ILWk z=$&<*%vzC7uY1(sQ_U<$0Trb*33MvexA3@LR%g~jFO9f^9t%N_jUC+`Br{5`pIAq+ z!8#3^={GaFHFB=+Sm&|fYX#7bp&ig+WVgX=#nBF|8RY957%&tDgLTAx zSY}+l|CxU)WY5(o=PK_t#2ebf>vi$Cibz0Q%XOAOXG;1qDw!HzT6|xOTN__n)YrfJ zC}zJDo53i>bxnUL!o9HiAhdD3oB_bup1j{W67BJ;bBqk}mJ*E45fuQ~1<87`$FEU*Ud= zGihAFz5vP!Kj7G~zND7;f7IybJ-}Cw^uJv}% z<2xF5uck%s+~Zxx-m*6{pO7WPFupyp4X8gio4h{`DYs=E61`_^IH>wJVIgz(V9_}Nh*a7k97 zG2;;k=N*z*4+^gbWmsN!ax-Ns9TO898&e})Yh`6^ZKPn^^{<1>8>$u(c#mGxzEw2F z2S!P{F*mRfQn9fSRngX@+ZlQ`=FwnMf6k6Yth0!J2?R*QGRTA(p2~hoA$;E zNC$}2U*tf!+~EY=Eh4uHp9|c9=TD=J47tCVa#cGXy%z{WE7#VXqHS(}HwPL{NeZM< z7TYB>q|Z9QadL(t_s_%cgsF2(ST#p_m@Lw$NGz&^F2d60EmDTH)#nEXFU5zIo!7hm zpsG=kG_4#UW1?q}S~8;H7#64im9uydwdS-)6%|0;a^vffcUY=`H~F%P)XRP2A!E<_ z6Jbi2h`_ouMPS_y#N_ESWm-%&&qViSZlM4ZH;RYR2xv}Dqie4ab5dQYM(tj6WECdR5Sg6MK4E-spJz^azd}+_v zgF~0vS`I(fl@XG4x(ENn<+I~=YYg{dI+}iReAF!`!*X}=WIkVL<@BbmfL8CU-D~gmq*PuaPwk}J;IV&MjDDSE z)Bh0)Fj^<-W;~D><^num1R50Q@W^mRyMy)c_$(ZR+G|Yu`z8OyX2~xT{tJ;D!jhq7 z9|+g^$T;8Huq_v~&4HQH+Nkgw@K*M=1~M(V#~GOk`$&2m5{SYfwJ%Z)ZZxS$?g8h( zGdrO93QbF7vG;f^&3OG6m&_L4YNPpUN7fiaga)QB)((k#*&wywTfu1X6(4Z(n+9FH z{c_rt<_krNg9U;M!Jpsjsh|?ZB$d&UGqMs&N)vByUPVoJ?5P;$Z=P%?c$?P#)oU7m zv{g(~#$j$ef4ukGjWdO>L>$hn_rPBz4wKzBh^^CX9Hi;~8ITKw;!3*-tFnW7>v-wM z7EetYP6%MFgc?((L;e_j(PTG`{+A#ud$y$%U;xn@?0h(;WKEYC36RV#=$NuEowDt1 zzf0$j5?5~{LTx+~m~E+0fL9HEG6psZGw#2w4WBwl(sY_d?3qtyouz|X>ggssnMg@3 zxun*+8NRMX{WoxX{=kx3JRvNKICW9z12Jb0tOPwHo(%@uGII#>(!bH!y{R(kD7R zM|mix*aEb^H;}pe`}lI(RvnDA?bMeWy|*?Ws4O2`St$U>c#CHz)XEhlOD#`ER6$!{w89uHoB3?ggCwU^#6ahp z`rBGy!%mr~rS;U(QC8V*%KJc$QfQj5u!)|vT3rXZspVYoch~&phjWs70$vPS1ps#j zkuaX22ZXw+75q}W2iT!ux-r`gu$2=Vo4kN|$HsU$GFOIfNsgEPg>a(O zr9s#Qy|be_WnvWU zYT7_e7ag%Jv^BNI8fkCu=qS7{zDDF9y(OssJ%rTGj$P}!GYIAgGHs#MqgaG)>${=m zW<%OqFQ2?MA7JHwxGjSl`G`~!S{7Ouy;NCSSe`m*D;&JYdhvloi$LkE| z)hO%8=1sOT*rRRg$0KktoA}4of)+8#XxhBo|3v~ca8Xk+@SEOUmNVt)_57w2h`slk ze~)Ors{MqE)G0y!qNaN@1c^@EQMW^NqM^Cvzil%_5jQg$5@f;cLdX=_a5U)W*G(5B zEiExOVJrvB9o}&*n6d1cT-uCxK#fnNKM|{o!_-^uP_wbN_z@Ab-6~@{>CoKk@psXZ zhWyxrs~2PO@E23C#zsMa+_M3$TOkL?b-M=e8{3RLHl8iz#o;~R=~IYcmjLZJp(Q$y z*0P(OWmjxpokc@uN|SfSu!4aTUXQCFh=SL#Vkw2xS3iwhs!;Kf&Y-{Nev3F`bn^l_F=5hqGXOiI@0j>&i^C+n@TB=`XeY3oLNkGok!SO2Pi@k2gb z=Eu{aQ8m3L|7cdy_Wc1rus^nV(73Jqt*1DayiTXAJ;iO#ZoA#2co7f!!ijyCO<(@n zIuXSCd<1>iqb16o#ji*b^V2JCUu#o0GoBUHVi_md{sO&=Gy6nCJ}1?WOE)=(g=F!f z@0L_jt658LXweGh3%sl*Dhhnn*op|2aY*=EYdnw$mR3jb&rn@WogJh~qf`qcC>sK$QK%Yu_Doa_J8#z0{Z8Sd-n#+oA700hK3!e#KYqyjGkg z?(jzZuw^IMx1A~kP4vSy^f)w(+Z*!>SGtD;75nxHV&PxdbY(+}ELO1G)@m>Dz;qL9 z28YI`>d;_XbsQ1XuUh`q7oZeaCO*XAwuyYPJs-)88R(VV7A$>WW5mtj7sCY_x7^G; zhW(P-x)`o45=hdgPlG*# zek=X4D%`a!!Y{2dbR-cGXWi6Qle*mnD~roJ&KiKHt2qm?2Z=B%s4=9|ab%gXEcrP$ zx*3s9gdvJl%%`V%_xZafV|RRG37LURmBBp3ISv?mKP8IG7WmFS14j@gEua{(YJ%}% zN!K5dV=pu4Mrq+g&SfHItPjLNOqT1f;MeGjFCFE9Td=T+!ExPrlAh8qVO~PIaoN`m z^+iirxi~Rs7uCq?rh9V`XwvfeLxRFYIPqB-E3A1-N?AKOzx(1o!3P{?pv_c)dtbo< zzeB^oaUhy`llR3#pN~V(D|j`IU!s4VYk9ZV+MC#vEas@?iw#XpEVGkU)djn!hnCgk zJR4CV9ZifLj}06a2-t6rpK|tDo{*QWfyDM?oB7nE4cjMk^7d_?)q>l{4}5eUVpJ1A zDcu}J9h+%Zbf)e~_24sfNT#^XHF6ZThMy_ZUvru=dXWTTh^=lH=dVj84t%9s=HMg5D%n5YE#F>K{; zdfI}-p={&@Ym4C}_ky98SzuW-w3;v78VIAiI2Ia4Db%Twk}y&4CA%v;s63PL7VrG+ zi>#JN*GttZnxH?|t^LV4&R5WP0NofDB5KcKzq(oQ(?OcExY`GmzFy<&}|j=3CDa`V+DP^Oc1UhnD14UExPD1LSxTYsKB&)p5a%h($C3N9@hslw+Nkc>nk9$kQtHFA;zyVyVWde~3Py~KqlaV)viw0W zoaeTMt75-W{`B5@d<3REqwxuB;q337pmh(jh6TB?*X#VmUHqL9l^~oyo@+yMP%#4b zCe0sj%@|ZwX6dDiT8lQsT7rc1XZuDsK;UQWQF8h}SElW!jTv)+S0#J3z1-zlg2bFY zwwn8uP0KCH=yn63Xe{pHe8r3av6*zBo~kt4yLC}bPan-RWG2MBCvL=b_ zi6D*BpkT!v0f1%OX?A2OT{vF}VZk>%!EQi2F`Gtz4#!kD+i*gE#8bs5I_lx$QryI^ zC8-VF*uc>~P`NxZ)Kl|HwXV4F1-f|B9f*y`8KA|=_z!PCfM-_&n^nZJlk*abT`f{R zgLPS)lIk8HDC4aZ8fF+{v*ML;#zt;qCH>r(VV5^ygJhaf8WZn^KzjYLtQmf z40m(2b!?3G`Tg969zzHMZIi_-f?ORPkjbr@1_#6I=ee9*>ZtofvkV?<6p{i|+Eszf zZ|ST9lg}r;3aHJjodUEZAycuSly*&kZ0Ih$9Wwa7iuOoB5$uC@ylsoxu&!&TO=C{M z6hwz4O}Q7Yci7^TwGVnqMQkBtl7*r#9Ktw#Ye+R z-(-HRSWyJa$Kv~L-Lu&9cSETCzT%wuevX>(2aF%g2MD_)QIoDCX!4(Q;W9O=1Ea*M zN$BrhZX(gf_~bQm_U zVOs}dVfYXEt*;9~uz+zB7$`{ad_hT3V=A#w{+92<7J=e;-Cv2VDZ=5sB~IZ zI}1uAfX}z@RhWP>T5n0UadL{wF_jR11rczA&+Y_ohE{ld-5uXF%{8rWNW(rs~XL7*?lfAqbYx+>t&aIrBDSFQac^#B( z?xzB!j8C|+a=yyILeLq~P9bicMVUQX>DVu#XZ$>E-pD&Q1xsn1@2o|eXUJTXKG_)y zRw5ko@WIdCPW`3_15tY3z1}mYf=6*%7&1b0M7A@@scc+P-8^FmNTF7uU-#Hvv-OZN zCM^Q!x=}IXqQ;^JOj0gjKURdnDbNnzr=i71;PhAa=%i~+pIS~MfNiTQ^}T zfjUTR#L_jiYBWGqZepF@6pij3VvY)A%%`HJu3}>_sYDluf?g?|z@j2HR&UND zYyqDAQz%@wHMIE@nqT_BSAWNse({#~telei2G%GvFNM+R>rn z%U$uoFY4J06>@EMFwB=|#Cua2rF9P|yNjaZZVEJYf~GZD`4Qq|+D*l3B(8pUFP&>X zyUgf-*@w}m;yAAEgtza~Z7_G{KnJT!;#>TIkXH)!Awxw8zs%5`ZwrmC@tzn&xDOur-d5OUyF7sD z$TuD+7EGFOgnLiaR6`)eEJze=2T?qWCiczOSB1N|pg<%z<12g*6PVvvnF3@udzUvn zx{|ibPE!=;U9aGP*?SlEB=?e=AfI91I!FClyt89e_R(ZW-H1+GkapbZLT7f0-;U@X z!}qK?v-S_fTkY9qr|c|UBHb_b3_g9Vi%sk{A9z)>N78utxIe*p$#hQ1Gty6}nvbS= zk(M`nuWHi(uF);VfbR~LBL}V&vMrz^ z^up_3|9hC%>SD@zRJSBTs?2?*Ty14N^_uf|?UWl8W+O;+`kQ?ObLb#g^-l-+HFX!1 z`1%tFPGn7EbUw$QkQdK;{CS0(c)2t3{vI=6!2)0)Gf_C$m{zMfRr1V@yj6_&*fY0p zFgo$_=D{J)-TR0RGi0`f2SJ^yisokt8pCp?O)_oZJx4Jn*zX9z{&tBFJz#-d-*3U9 z>)_Jtmh}+(PL@nb&%fq){tJ|CW=j5F9GU-U+x%b1?EizM@c-I9^|U{4c6vX<;{JO4 zh6IodfB?h95TXC&fd2@f{%{f_Bot-~T)?yO6hz4>0R=k4Fm-`~%^*I#~MD2Mol5wt{(WFKOHZ=$$~Pi}8S)JZeACSW}? zg@2W`4*y*9noxo;$Bw>Re^`))wT0qRoENZP5%N!2i+iF7z#gz~6rsZBdFKcth9Bi~ zyWSLXj(&8B6e3ee7Za7`)*dCzNF9=C#lr37)uY(lj*6VWJ%BgCoa8 z4Ltk`nMxI?N?f!h91r%I_Zi1^_pClRP_2`coXCw01U zWCv6rzS^WaP$!*C;{I2BIoY9CNm3~uy%f>}3J?zwkT_}(ARh6`l%6KfCMD9Cl*!QS zrVHMv8BgeJlPC4`nPNJSs}a@VjTxEK0|18o z#H$Vl8U^n6Kk3!Mta?m?Qyy$%Bs~VaV>QH2sb)=+0cBOuN1_sd3p?i|S-HIHIOirS zY)ER{+j>@OQO`wI%v@SDc4)*X$y#EzMM7=z!+u_Ve|()VxNk5ic*0?t-9NJGR|h`g zAu=}grxCA^b|r;(*L*$9Cc)EM_4;ewgOg%TjRz}F(T-;fi-(v{a0q8U6@UE$4d#fs7<`xnO zRkz*==@~Gx{UiE$)!CaR%9CeRDnz`1Zv4*OIHX|}sHhC`$nCKt|1q%DaxT@KJ$=xe z?)^A&$kR~OQQuZKw-yd|1RX=9KHIEko&@h#5-LLuEiVW)BO9B0L#Gbzb~ybQd;^pDQ@&$-akA>lNkzGPD${R=8up`6;+7* z3k1EdD_Y3b!oGP`?K^HR48ltU3XjR`YtjTx{n1QaB|?<6>Ayxn&gL5kxOM+00d_?I z;ErElld41wA5y5&bo==+1_{-_CuWuf$Qv#~3~$H78@oPH-!DmIP{ZwQTK?3tdqxTH z8;5+dz5Qok2DV@B9l##|oO-zK&`~%?CROZVNsFvwi&4jr{J)l zGA}tYWj#K_;B2)0*)GwNTmuMa^peSvW6YsMkX+iCiuAwv>zENtJt)OM`ex@3E@Zu) zuBxPpf7;Z!8*cQp<@Yp`;T>7Ji%LEy4jj01bX#WDJrO3UT-_eZ5c>fH31C8umz^$o z?7Svg0oe1CX8fNpMeQ1F7Wd{7MSoQ$ML}v%RAJdb+Nxk`|RM_9DLhnEU&@m6-qD z05$Da2+dff>7&QbEGk9I1=FOJt{zr|LN;k@+p<|#&Bv&$(*DrXibBAG1^c0wd&f^t zGK5c9TQJF0>F3kAXKG2Mc`W0lBE)&U)|_W#JkrZ;b=l%A9~yX8K?s}1{%Vyd1F6OC z+As}(buAn;YwXZ1EAOqG*=aa=?2B>6dO;WfVT8x$Y%lP+*Le#}y%rc1%aw()#x2IB)qX5M?#=^RQQ8}S%-L6Y!<=Wh z>3CzHO}W`Bl&;gK7pDIm#sF+nWkI1TEyav%8jK&<3MTLfip!3-Agg-`d?MQX#AgJ2 z7cL{1Cgpk(kyM)|6cKY_qc@4#3!+>d>PLf@Eut!d*+S(282q7i9d8M3p761vw)Qrt z45O(1L!8y%9q3(Yn6_a-qdYYB(Nxyg^L1&b1Ws9tKKzD>|1bmN*kfsSvUaS7e1;j> zNCQ{B1Lo}_EBfvgSqru!tZO3qq$xQeA-1CN`}`xG>zq-&v%3x^fAYaZ>|DVx)JK#v zxAMJ=e;@-2RU#i0rWks-y0HM(S583ub`3L6L{Vjz(VOw zIRN)Smks%_X@RydryyMuJcDObI3{OZJhCg++T<_PsWxMO@CDp)Bi8bN4lwNhQFHmf zOi2GngT??s!9c=*bKtH&5E1~{5g7cxeEL7KHvik%h>i1qvffKQ!8MZ4HvJj8CyGl| zVl7*&gj%$?aVl!6)oNC4bvdYryyZ6xLlQukZfKGK00$wmDTE!ViO}4&YqpGAR*iLa z$J9Q%-{zga^99D-dmnSJes$Nzu=PCFzPBIUe{b0BaNOPFva_>2hN42J)aX6EO%0q( zwyWL}=7-x=11AuX*FwX}he60X?KDT@jKqV(BTyYR8nC&Y0Io(%!@H7e@V4FHU;S6( zy)GFqOY_Bh-V!ip4%%`3BX7W`F`2B!)A5YY`wpw|>bhoS9x=uaVE5Y{!<@yOM;*&L zd;Y%s_-nWbO86+8Hzv%tACH?%jLr|2jK6Wv-%2*^=C&~K2_|7+;w4_Qx<c`=WV+N_O+*9JlZ=aB%U_QgS`u*0Cmcuac9Sg^YrjOBD40 z9SP}}uZn<;KI^__39Lav#X`hDK1RVmK0xkVrzVM{ze35!$V*CiIVYvdiU^VdpwWvA*<7Azb%Yi@n@yvdxm~^fSjquMOYuDImtWWJK;O#cM!ko zZ)?7u-Sl<*CJRm*m|-yIV2;F?iNs`J4#k-6ngn5h78?dI7HtKa!DKO892CTZzxM_3 zV8jaw7lrHWFYYhoYvyRyGITo6cD2Cl!>+Rxc=a>h;MC@PZtvXuq*NaDj5*)!o#_h+ zJzexK0Q-XH;T*G{PobOj?SBrw;_3fWoSjFchx9M;zIOMogz;c^NcW*@VW2VHlr`=j z4%I{IwsCivj2H}c3L<11&X zn68&_5r>g?7)=?M#a8QXJQ}}0DUMXH+7OxhuE}rF2 zT~bqBVk=D{KL)XC4>LTkoA8JPwsOKhwfsr4Sv3@6EA$Bkq|PW zT89Sda~_v+t*|RVmc!+CSPJHGSoZ)UgLBmX>q;{|EirrO(&qi$gyu5ko$@*i5p}AT zNr8T!_ABYAfQe`7a}~5O(Pn{@_NVss@??vJ$JjME!?-pJgw{KI`4x- zeHN=n4pG4$+-P=C-ekhgi#_u(tLAcZ8Nfj7>U@Pg&_@@c!}QmCB0>B;KRo0Xp#upX zEm(-}X~3`t<-zrxDgT7_xT0r&`bSLwlzA`nnGX=FUPuCD9!sbZI4#8V>GYRsJp^Qa z*6Iv|lz9rS(4i>}dfi7TlwRy+^q|Ic&=wZ{6X-Kuj<0aF;x$9>Oy5o-dz;MS%ecYi zRx4Jl7>sr9L^dC+SH5-t*p}bfoF#su7i@0lkr^EQ?K(Jz>>e&sN;*oeVz)<01(w|~ zZ#94Ax*S=sCd5V)@y`M!O;)T~k+4+CjIz@k0~Y;e>h&BQ;TsEym1K2vl$3OIWR;AK zWo3;en!Bfr%R7K;+i7b!VM~YYPY-oq{xus$?YlKg1s$|{bMT%oIUjj))H7HX@u3Cv8O4y!{is14dY1ruL9~jlvU<>;T8t=Aycf zUaMsd_%~#Z6crh2ZHPxBl4mS9+19!9AcR`SZFFkZqPMNHLUuZDe=UGdv)O8dr2rCj zsIEkb>q^0%l3yqHh&C$jpatVbhYqYsPOpbBpk+(d%p8J}3O? zH;sYmAN)M>5N&Gvm>MCV!46gbL+Q(M?Ik{6@2~Ea$0D4I*jXuY<1w{yB+hsrJL^zh z2OiLFLh&ZIF8@FFC0vTt^JJDO1@lxb3DG8I_0cbnAU%!Rw$i&K#b{&i(ZB}1yoV;z zy-R>y3f4lVI!Z3BzyF$x_1O^KyM4bR*G>$6sa$XCqIB4?=8(De^}WlvpqWIRGaRCD zMCD$@gkb6bGUkJvnoG8vWnGjbpDCT63YQA*8-!aoOpM@ zdKdk5+jyJz#dXN#d&pl>JvZdT^wS@a4kEn>37B|+cVvF1yK*OR0&k`C|4=B)WThB7 z6SZ>5_LACA1N-K?TBQsX7Er}H3MNq#h`k^vq(sc;u%kgmjjgqH1;|$4G)avNz7Re@ zi1l2Q43s1`UHAp?hC2;0$zU~t+Q&eHxi6bpSuvXx*AS(9UFf?-=fMlfxAg+oN*TDy zzMp>FuuH%=PX_O8L1!!?fI>7GAGilmX#(q~Ecz-#W1t=mSBi?T*E7x{M1uBe3^vh~ z6HY0tn(p}z{5;7p#Ke&aHsq-ov|bdW+hg%}4h{PqZE_I3camZr*H(RBCK`|p%P% zA`wJ_E&Ujif6Q%1PJ^%wiuqu`4&}<2c1=uB5QjJ}8*IVh2Lpu`6!~!2aoSuktEGE4 z{J{4R-W8K7pl4uxY&ECnjJ*Bk+l0&{*@s2 ziNllmoA)q!4Vo-MuwcK{)k0BD+rS14c~cYX?anJBP{*tJp%Rig*5;22T}wYGA5u>@ z?CuIe6l~ArCtGD!U%Zt6w}+zB$8JfeVP8+RPNCi4r%dyfj>lOWgxoEs%Q=Es$63uH0~L z_Y#>ROTNVTdo_y5AegTZ6Vh+T-m;lHSxTA7_=HfpE9fSo0m1uFkwc5;Jq*e2ltLD|**CPpF0l@>MlYP6d4y91U&ls- z&ki=gLCiiJA4@bkBxjQ-db+moyM2Idc?R!f-P-w~D7Bj00vI4vxyLUjj=eySnIDS89zv+nKy>Vrr7o5C zUpU$%`fS&kGkoWbo?0Tx6VPB8bh~wv<%|_K6i7spDohMt%Y!r1(6pesf)p=ixY48o z7|+n@Il?6a*rdR{!Xbx#GOO|(Pvg%XUtNg4&^4yeTB1tf+JJ^ZFq~D6<|}a;|L$Y% zO_8XNJHszxCIuGoFZME`U z&cJTDU4kJ=7Ru2)=X-#t(K)-bO z;gxKV4wW7tZQ}SF!h2bsluX^IQZJ#x=`A9-|1U%XM>5t;*tnh``rh%5& z9S9X5WP~;WsOurgH$WN!(j?T%WH*w88gcpP#cI+i1*=j2+kD7pa7^l_4w-J1DxyR|W1gt#f#5iVJmP+!_1O>%Z@+P? z%%q+n3{3(5z={>hL+810*b==~H@yxr{@EhOBMP&l`qqp( zd@p2&h(Y-hw5uW)Xvkt)QJ&*bzEneAAGc+E?I~+fF&8c((Bq}2MOQNMM`2+V0Ev+n zOSTsz@u0_5#x6qap05A~v*c|4%BVF)9hNJ%BW4zcF=p4KzLNq61N_NWs-umiX<(rB{4Ii(@X#}+@B37Mz51mHFyz9w19eE zUBR2VqQ^X^edFRK=OUAiCMi%$B&;%WzMsP6dsV5s3aG10$9N?OMMW!CD@qNSl@pNM z5zg3_6-5t7#XL}IZRqfKZpe!Dgrx3;?e~BwGG|vEh+q_Gh?7=$3`rK1K$);1EaKA|F-8jfv#+K(c)i7>Dt!x*zi)P%D&Nh!H6N^o*L|{Dywix6@{8W zl%|lq{6hJeirBSQ)P5lw(J$5Z@^NktU`3;Xo+sL}Q{EC|)04F8VP7=IwX#C*&Uh|@ z--$2()JKl(L3hlCzq!(l69EtbUT7==-SCC6uUPYZ&7(}#j|bX}@KzIfPe-sFjz@!} z9hS8WOE++~f_WZ?TIEuwDI&}Z3(`-eay8i{i_?=#6%g0drSlNUr6hZ!?ZxK>vcDJr zevlXdJ`6f>Mw4`6MRT-r#ln&^*&x;?#Q3~A+Z}I@4_9DY6rm<*{sCy5wyZd3)}Wbq zE|dwJd*NW!4>4WoB{O~u3YzkwB)C|ubaqyQP7@gfvY@s&xm?(uax)%huhoctbX(wl z9pWWt5GE^4lkyTpQd{SnO$!Qm!XT>Zh#XJfO;`sKcT^djHjq{^yb!diddh8G+t%DN znxyz%i*O!k@w8Ze+>A^gDC-Z5e}2KV2UP3Em?68%bw9l-zDpj@{3=|&-~`Qhu>_0K zX+I4y@j#xbER)NUk809I?tFbZ%jQ?7Y!$&p|_Biq*!c4XJw}(&D+do_DA@yKyE&% zCg$_K**JhHp^C7rpyab<^CzY9HpIuEmvm_*2-SSxd8<5GSdya?7Ba#@#ks8MbNps@ z7Ny8~pqyIeq>5^-(I;CF6R=a8bTI*{t!*3!jn{J6nC3`cdnJEBZ0vQaa_Je|inI64 zH>yZFk|uUB`ukU9NXzJD#rbx0$2@F4=xr{%1)t3e{8mLvW%iLZQgxARq)YEcBM~uY zA9uYawk^^Hp%Y}1h{W1Fj0@$36s~UIkYB@t19hoLDHKGgN{dVP(hrde%? zh#u64f*qs!<ffW{C36jJJalm?1CLNa#QOtN_8 z;&GyXgoBV^jVZX(LE(TKjJE;%I=E;e0^Ai4B)x4hkEAFgl&x(fhX^jyF44pC&jGy8 zpFRBRcmHSc&7_KF?VlC=v6n-@Wqf^*X8Mwuvb_)a;2b~S)iWt3;-R!>c7_W{%u=uq_q{~)uvT2BHP|; zOi>cCi}(s~e{-RdCy8pq#e{*cL(KkByJXp-PCF95Av0=>D0cs49jt8~VG+eG-Gx0M z@Z$Fn=(p)ZSQSI)A!EPB*{NXC0-xAW=0jt{j9ftM&8DB9VNXhFXT_RuHw(#v8b#%q zbWS;5+<6Wr1;^%R!x!zo)Luugg3PaFrlH_Lt~15M!ebxN2ezp-V?9&!+)v#m`@vhu z=Lqmp5_|zB#@tTU*aU&AW@+Sh@UlB?b=~jS-+Ff5Mu3SdWb0-qHQPzo zWrSBXoIh?Apm8S`6Fh9Sph^mCtkZ;#D;jRgEDB2qu@79hz0;!Yo0vnF%_1$Z>QLhu z7c6`6X;%>HQpF1pm~4p{Qld)E+O;yua%nNmUg*0m{=BR?WAmB3^ z7vS-_b@tp$x0*9t7J?PEHnjOD^z#*?R-6zSVup~;MdpI%t2bZSt}nV704MN)Sy z|CG=7iLZz>)uQ0ARmzd7oew@Mz>kEwC8O>P2jAOO5H?||+UcEQWi@Uj6fqrd4#zqy zNc^LWnohQ;W;qG4HI0ywEohLEga!=V$&Nny*a1`9^$Uh?*XoUA{@ZpH-{#=Wfue7t z6h*&LFrz$?boK@wI&V=aRl!{?+xh@JGRr%+uN;-?J%ptgMq6t_?E`@wJOnh)>XWo^ z0h{t0AZa>N=r*lFVuiA4LmT>jjYPo*BNYmfl47R>_NaBMsb1~U6FNaP>!1*&WJp!T zgrcD>t6K4aXG}r6eewaSdlH8$&edr@FAD3&a$OA!!OpCJR+l6Uw%N{qc`pCiP@!`C z-aLoXCfs#JXMAzH8uNR*3IYQ9E5GXV8|X`1kXi5NY*YU*h$W5?ntP04=_IA`!UYw$ zh$Iy(O)y5Pu@2XddQMM(6yw8uBEX>w=2-$}{9M?Tz+U3xL0H3qdpwSG)21Yh) z?o!t_A_PHVJ0~L%J*^|#G2d6=SyXf+&uWTQ$p(+8cdI6bS*HlH)WL_Xq^n7GGuLRg zUb+c6u4Pg|F%g!N0z!cnJfS15>5J``OeyCamQ(b0DoN-?;-}1GUWX8*G&)i%yWKeA z&P)R|;Tlyb)}v`Ig1a8i>DW{30)E0f<5(X8w55ZUiLSkar+3mAyx|^7sx*$!18nO7 zRLp!Ko8pyfo?fyLNJcH(p_^&JeJ#%?a^!KLBr#FuEB=MCih!A%P5}>2skMZ-8{1*t zkX}Py%UQ5O!E~r@r*|uSlw}*NM!}+X0lh%F{R5H#h0QUX*TY}0f5g6R*3bvBhX3wy z`>=X)fDc}~7ZkOWf!wkaJC-|U+<7EN(rFgo%gzw?`vo@YEXG}H?{1vwW+%TM_47F{ z$OVpb-F3r-wq)!j^6ShiTbC64#ecFNT#|?Lg@2r6&7OB~(AURop6TyzDR+GH`$N<- z)}vy<7%XcjNP_Wd8#5vlKO+^5f&%6BZ@)(ql-C~>iWGtt3Iwp_-O9_c*I1Uq#i9y?IXwx9`x(^75b8qL(IB%zRS-bn&w zOxZBn>YUY>8Wm%4Ob;qNwnWN_8Wt_-UmyCgw!eeo?#lT`k$v3XOg>TMhTIJP@4E0T z!ncYrMaJQHI%nq&)#Gal>@dXq$zAh&JQ<>wUoR>6;pA=OW-P4{tOU*Dk!C>+ z8L!Js!#8uEHh;=Vr6#YqzXvZoRVZkbe>hn{S0=l0mbuUJaT+slM=EHtfK2ltI)G#| zu8H4s@Sun5xbt>iAGgQmO6Sj4afM{d4J9O zzGxIARh5>tIjYJNMPA1vGo~q~xcrgLzgpurAYH`j1g{4ayO&^Wk;u3bJZ^rHZE$}M z?P$}#6Hy@qwJEO7VvwYc&un#rXYU$bONgPzEtqm*Nb6*|SZ^cGX>_W3-8Net&8Gnc z#&X7{rai-W7+b_@)TCNNl>Wp4N{w1k_*_Cq;~xmBdK6fLJP_IrTH^Zd$cmvFS z%dNrb-c(rx;scITyCgscx3IAD$e*$8;bF>!OIMB@ zD}l!69T2|1$_OWqs`Q5&#uLbxYYIkdYEwm3g$cL=yc5g-b5aVAH;m%;=E z$-uy9kYe3mn<(mMa0vj28UqmPfSCF(zwsYItN*Rn$HK(+KkUU^4M+{;wN^ex5^|#0 zNk$3hO_Q9jB`)xE_%#pC_FA1zo7gj^v5XK5)dI2V2l$A4Sjc#{ukbDu&)8xz zg(V8`$;d3hnG!Q)=ZcPHA1lUxfH%RKvTX|Y$zUyMPbIw+_R=yRO8&`wsDhwM1gaFM za-s?fDd`afNEM<~k-tdFM9FgAlYST-%*Fqlvu0HlUKu_b@OIBhq{c zztq(QC$7L=BIabD?1EEJCUUbz~~LMw!H_BYH7N3_E;C3Oty!Eit7bp z@I;()Q_P|)Q0!n+=!gM$k!i)kCOyUUKsU$Q_lhz>$b+Y3QuKxza<;j=zgubRJ{6_4 zO>EBkN}TFe79uUzD|rDOUv5}){mgBK4b0<*{J#&yyS?8$N4OEo{7&ShuA~)tW7r1m zgNANK>ty^x4SfJBA47O@apoqNAR7}3z<;>^pUTcDIumBu`x9$o+qP{?Y+Fxk+qP{_ z%!xCxJ;4*(wv#jGyL$K9`C`#GnDaCKh4e zr=PPtykP=NVc}}GFvILz9#5d9E@m@E+AqSOkj!s> z$)aVJCZAq2Ss}?->Enf%V&9JfK%11(j5$qCqo9o*ovTLaX*y^7aWrfZ9x5wvS=;JUHz(!Vo+0uLQJOgZhy`3YdI5UNs zNm{mY7F(qutHd5D&Y1gHU;HeFALp+iNfm9U;?Fjzy{EKaNjV&=eW2dz%v?4<{0p5@ zP01VF6W{?UyMDgd<7;1pl(Nlon^@|!Ht0>l z6nDqQCclSuiy9u}FlaH*HO3p!RF3ugEZw9#?AkQI&_7(p?WZIsgM^}9gb#Eb!@CpJ zc1hEj)GmE1r|m^Q+~D;+EBq1tE6Dm@E7q)W)s{*yTLZJ)ZHY$awrYa59iMVKNfOlk zaKf6BlvjD;IW23rzuQa8&dp9filvrjr#G;2l?MSzR?SA3p^2+3Br8-v(CxeL=QfDb zN`LUmwxqa2J=Cwm48-|**V&cniF8GFMCFrMYieAN7oyOZ{s1L#)Lw16m=+deR-X2>ItnYudTbb_5!Qu?M*-0eghsZMK`kP+4|<>$%4C1zkt}Mn7WPJn zC7UzCZ+n^(I8kz6TdD_vA5-Uj6J-k~)ts<`v|b|GVDJ4RA0Mj&yxyzd_0|)ljp0FH zlSU_zj~iJ!x^^uO?*vH>Ux)z)NPsB=B0VrhC`x0=CgKGkU;&2?<~iDMEqewltNqoB zLTo`tPkaSJ;Msk;qkQdf3kxTQ`q$gj_Vp?oZN~z(-h4yC>0ROU(fZ-F?l!(`r{D|h zo(u$(F}ts~&fS<>?iMQ$=EUpK)dOpu)xdnp0}Lno$f}3t{$9u$7UqIh1!5G9>OlNL z8Z=s?3H4pgiDl4@Sd!@u&^uW5VhDI@PyATM9an(8e9%3pebBS-=-qtL>~0Aa+*R7) z(4wYXC}xY0CDH-GC>a+j{_wz?u-7Y3uq(#GGOy1pqKxsfyP@b1)6Ky?K#A@|o#wgb0 z5Z0sRUpG))nL=DL(U%+W>K5yX4r%K^eU)NZ0|6V6%d5kjM;GdLCY(8d+*10Dg;%d8 z^FYrimFeCk)`78U0k?Q90Dt$p^9wcJwnn{Z1sFNNcMrx$ZprT6esX^8MJh|SZ@1v0 zDL@&nAy(nLfNOPxM`*OP!7E_H>mFqW`I%8h{`I!qbqp*MxEP@WcD+MVAjh@#qo#ZP zMUS1uhdWc)5jyWm`paRyoj|zT@T(e%=2%mPg`7p@&8qu<%{mAQih5|I7q)~uocY6} z6OH{mn(+t4w&cWsZQk7v3l_KvZF{~X86!(en$Nte8@pFPtB*1}haX}>4Rh|CXGum$ z^$RO0qZrUn{>1(%p=l8Uzp*_}-|>vKPWU8%0f!0A_PKb$jKS^*EK@T!$oKA+_MCSx zGTiPnU=lP%Jo1YmFs4*tcsza$%P-S?qXBBI+VZa zz;xz0*#v~u^UbMdDHY$VQ61?HpE5K4M3P;dx|k4!xUs<-kKJkD-3gmK-F<(bXQ}P# zYHs`~_3Pk$0}Vyth?Y@5A=xVl@a=%Op8NiUSm{VjvWEtv>{}gI!vNCn_&aMvYHbY) z9lcMZ7npjl+@{c;uve5)WWqu>dr=m}@osnV3+rBDso^RZ=fJU>`5 z?Y6DHJ`N=w|%t$a~ZS>^byacv`{+C6n&A?zf>#;zd^U3y9yaksG4 z-!-?xmO*%4&xi2cEC7jv>KE8R7e#DTKB%gS{VwuN)m-OVyV+}UP&AZ+bN2&frvSj3 z*Qq7eM@YVrLK=Gk?~hw=ee2cUMSjdk@l6m!n-xU=V!|}@QQvELozRd8g@IB0p@L=& zzh2V71xvwNsWjG#|7pJpn?DQX45{l!0@{&A$zG+c(j{*$o4h2&&tYX*zUc( z=EwSD9Ti7U06Fj&V2k;k)cx0Yc~WHU+Goi(emAQ_0uFzt8|#Cb(sZWysl$$$HDIbw z!GXg?L)iV})R3;im740HfCvLJGPjOo_HRSi8KG4CjZn=!(t z1Qwz}n5HCt9|l3byx{?EcNfE<6N(MQ+~~Vre!hP}!k??P{NM2(HMWGtPg^h(6Jnab z*)Po4OnMo9lSXrPJDg=fL_1|oJH)WR$C_z>KC|WKy=(1H3}+w5B~Ij10x-rJe#qr8 zEmEP>LZixkg8$`|zftmQ&FSXnMkX-u=8gv?#C!qMr(x?0VNSjw)(0V=dSw- zO34aU^EY~zQjVX}Z<#Rt5>+uV({zmw!Z$1Y7H=h7O<^537y%WDg))L7)MDQ9Jc0xo z#yC9WM-jIc?nUcy=YD|3QBs|C; zGAPk-tY<5?u+6_i{6XIIw{fIwEV=uVUxSK#hxlYemXo@NAcl^lB>BTSToN4y#@k|s z;e_B>Jam+`^tEr{txIxUk|f#Zts`PvT**LJuzBzWt)uw6$WK1?9DSA|c+3kFUC<^zImxT6!Q;PhUl!z6nhVr0p&V zYbPa!xnzz%D<{qNL;vJkB;sR_c$FlqpICrW?QL7r`kx7?>_E zL99^RZqDr_A!&PluDG}0pzCO4$Xn(hUlyvo#p%#>it^TW?QYAn?QC;)LpL~$J*-h0 zXTFOk4wqg26g8QyO4u6Caj46Qkkfs0LrfV=8q7xv`Ei}>m+$F!g$@Jr8}jRGnJPrV zje5RuFPS7IQhZF!5-&4JG;dDmL)Z7zVefJs2qd)Yy5}Ms2F_7I0;@{=_>PcCCffjo475#|JMfqU3q$aQpSWCPb-Eg zE7(FzM%YhSxJTf3N!xo`sJQ)3Llpn({4S`kW#N!c|A>h`JIyCTeh!<=e~>`_@f7TT zR$~6`Yr$;Yb&9fpw#SvCKv=aNc9zWmHl#^?BlX2)u6>xQcfKwJrHPIrm}7`7Gw zvX%hSeeh`i0kMt*>0^M>esgB)%2(hnAw*g{fsDIw zw7r7Oe5m?82$W-V`j-wIw!K{M6!|8GOmfLs5Q0=h0+n(j6`3}*oYIgBSzeV&6whKl zZT&OU8xe;wi*N$21o>!5rb4);WYH96{W}4}n$u`&k5BJ;UN$ z8_k}FxiOmr1{0d~K&LGFay?lXy#ZD{1#j+OWl{N-#d_!hc?eB8`Dq$)FiduNH?!=* zhy!zluwnYDy8A`WD~1u%Pc=qCe4;uvY*Vb?^^jrJ0A*!iR$UxvcV%f4SOVaTjQ8qQ$7aY zS?g0BS`TEKB^THN`6@c^KLbTzN^T>#82$&ZIC(7k7ru;iVsw74&Ds^;&ruMRJQVlz zXu)ZoU~L!JUA^OHv!8>5#Bug+2;+U+OcmC6p!(0)Th;{&cKicBp+xw9-I^oo7C8!8 zrNQrq@HE2~of=5T^|U>^8ragaM7@PRvRm|YF!Ws|zJPf+EGDB)Dz%ccjmui0)2ZS< zZQ!1My{qDOqV3fGPrM9n28Z+3@BJiQS}6c zhNF?!;cZ>GUz@|>?i`}%4uYwV)$j6lj*;rR_<;kimr&@9BIR3=UU0}Yz3P4%9TpD5 zy$dwOfZa!YtYD|s3>%2M#wNHh{|?8?_0VVo?sG}R6&CtB;6l$&;zqe&C!MKG$f}3l zA3}jIkf#@S|Gl1DbZdl{PHL?p$jg*bwIk!qtknk^fJM@v+opau-D=jg3wEBe-&@J=xGw zZ0wb|yJh=4%-{F~9@L2Z3VlG5Ek2S^~x+c~`{AZK3uWik$OaDJ?Ao$sp4VhE4nq7e9);!23u)Ztce7 zvI+k9QQ3RJnGE=v`5^UCD_aY-VzSieMSl9@<{L7lwXHcc8A%g!(PVjdhvheT9b;Y- z`f@?5x!4r9_>YZy%-?@3cK<_E{l^QH|2bqc{|n&P+Asi=xfKTf`*(zIi29)P|H0}% zB>Deqtmb0j_@`2@m%OEbs)aUUZc|RmqJ9uQjNrzA%XV3tt1gD>sbUjZvSctsSZMu= zNoBQpG9lAaI7Sc#JcA{K1{ww@C6rB>T>9RK!`dx23@MM}b$e?&nqqjpvz_l;mczQ} zXeY;c=4EqcOm3PSraYNQ%E_C|g~y}v;pjS&)k#BlmGBxrl{IL?Qi9zgecB^2T?j7{ z2oKGrn2LI3ghw0W+>Q99zh_nJ=%&;O9dy2G{ARso$bA=_%Kgad>P9?rPN7TIURqi9 z_(yOnj*DdUV%JePr8&i|Jr5BaCu{$5Lb{UmXW*;QcCWx1A>U_l4Oqm4)N0O9Ii+nMsG$ zl)h<6A)yzLi_flmalnc+mIOLfil(R{Kl^;ED1uJPTG}{%vR;wbSLgYFktu#<{fbom z?K^|XgB|(WKaw4k*d(lfwkRZ`9zbOEx2AXSTOhr@I`294n8FDms96C`*tVX9GLdvM ziH{pm#*U4%{`&wquuY7izp@=M;bmK>)llo9Ti>_d-s5^apq1X8Vxxa|6}jz>9Lk`b zK=v3e9&%IfJy=INrxVlIQB)LvGmM|mKM2a`Bbt$QUEuiV@JH>O`O8sLY3#(^gnKj{ z9qtfslIL_R*+xkIB(N%qF=4jw4c0~DQXF}|`m?FULjdT=Tnw_2bEY_G7N<=}{{0aVXE&(a~+?Od{Xh$)Z(ix;P!-o?uZu z`@Wtemdd8LUh^qh^rJ(7&m(yNw;_;rhwmZ%q+chze!{A5uHG`YFr`!F6^)nGXj0yx z9+||-%cr`2Sla?mN5o$C7No@J`@F%6)$*6m#zLJpWSt34yykWIR-Z!cvX!l>4#$R1 zOgB#s=W9E!31WG^hxDngbedNvoY~v>8)sD=W*1YeUtt+s82{2IiVpI`dBbBCm+6&9 z{q8Usk1LdZR&IuiCnt9?i%J>m!6C&l4I{RMfFMsABN{;+Qw;Z~kCo4S8$Sn+B~$hn zgk-p`%71Xme-xoazjIC5$Y#HT= z*t!04Je{0fh}c;FyJh17aAK6OF>(Qj0Zi;o0gSQ$J98HcA{Gv2=70M8kd}`9+AxaW zRUNQZo66?$!wCuNx>Py_7>PnI%KrWgTyuX!ipC%KTG&ERkjR!W)(B9G9Op;@k1E1+l9`f4J(1!d3t1Lq9K}k{y~$L=uaaaL?mF}xs?;oO^gHV?^FhW9 zWOl|ul;w0zgDf0IH3*#KHLyBE5ppIAW}puz3I9_mFEYS&h%B59naPV!lOhxnGbU+| z9Fh@BwMB$wG(|oDn+=K_NQ024E+lsyl7)kVMP*?WN=`k^gqT}U78(U>%@M$BgRD3V z+2tsAD~p!=pRrvBn*-6T2{Orimn#SX0Qy_Qxj~;rF zNw6)Cx~8H;bu&&Y{`r1oFbT3DOei#V@?om{o)kT+>pYMDje&PL1_^5VN?%0;|2WMT zlt>P)*WaYi%Kh7XuJ!OMm|k5UX8D0}dqGLOUkNAS@PyRMZbw(op)RouAX3Rh%nh4Q zhfgPFdT*qPnd2?R#08V=FD!L&N^A;3qYN35+GORw2VU*I3Oa1Dv*ObutI^PAiX>8z zBHGpzHQVv1u*Or$@yZ&i(Gtm;{RbY{C5m{&GYcE)k~Op>_|SV&G?uga#A_;5_O8OE zC@~Kp+9eDBax*+)2jPXrNw>9FuiadlWshyMC95`j3`acEDn+q%VDS`{W_v1_8>ZM& zMr(&rgx-~o8r24qz*sc8O!TJW>%#=|<>Rd&5y$3!@td|BMJQqOg_pYHZg@#~j3YZ?pDrYYn4 z@js$Z2Td1+hbxPJjxvnTc{uRBrK#{2ZcamFKIcqM^f_@TjLr_w&`_v}>@6$CE1{ow zR>4Z3ZBJSj$*Q3Fiop46>S>&m;hJaGB4NJFUELjOwTdKbmoJ}obsG3-;gT$sxM;OcGpnfPBxF@QcPe{GzpePYj)l?Mab-Cqe$^C2(?^{u;S z9_n(wR;zSh9&2+5;3K&n=s#{6BbYlfV#m+-ihR6(=fsplYn>-llu|anUcgSHE%LlF zPg4dT7_xL0#!0^FW-C%97uQfXPtGCi<;A z+})FJ(~<&6*CGX9D|UQ*pep9&Lin6tVKN7r6kL?F(%ZGy*nQoau}~;y;9X4|dl-Yp zY771l%6hatU8-^SyeQA%`F6js5zznMMmQv?G8xbDB}%@K(WP*h>Rl9;R53M&p78Ks z>&{GxG5;9bHtVB%_WOa-C4^VrB>ob#>>pT~DomHp}IU;#9l4 zRU-F5Zb55BEO%!#5!Q8Bncis@1CS`C+j<>6Tb!Dp!?+7OhpUPsnlC`dKb$|npO*$5 zA0`lBn8~oeZKRYhbkaL7X|RJDJjNeU1WR#Sc$x+jw?V-r+>NKQL^VRE3li=(WFKwA zjDwIMx2<)6BehtTZk3h@)yY{bcxXEr)1-(r0B73NYG_10`T6a5oH?LttqF-6O~Xd zq703Ws+D2o;M(`HQl}^c_qR9!k{6()PKuz1Gbc9;q0TQP%dUi;nXm*R!zTRV+&>E* zD(#uYr7A+hSD`=uwhmj#7buNNJqgpBM!}=8Iy-noFtjlLw4>=JT<3scEtBu$s87oi zL7&Kzpln|eD&&ksN%eNj!VJ?+9B&~t6-HMgmOKV$xr4`oo}56zMPr&nmA{#Bye?8S z5@(;FVH(;$IFZw(WZ_cDU5jySOc(C3LLVs5Bf#zbcH8QFf2nfXbMz;=?{?x2U5S$8 zZuDpQe&V66r)iDdK5`swGZYsAvb6lx(@qrwp!s#RP`l}fQeT%cF&S5?Bzs7e_Y{fF z36DLsKdwg=q{IT@n4G2>d10dxv|iE0Z}lEJ!bs=>V)a;t9{sN4P&srcnmz{3v`e`NjHWqkvoWpit*#g_V;gY?N4{Bwo<`229?2KBY9_UWSPo6uoyLl)mBjUm`TU^|j+` zldd0jy2gAA4-M8aP^c=Hb|qM8=yBL~n9c*K1MFX~{C>X!EeP@`6+YC#F7p=xij7+i zemdyfAx%m^@{Qds<*SKf&ajM$Mtyu3i@)FAfSKPvlJJ$tKb+$tYffleI7xuS`W zg;X?>AXKYTXj}y6@sxL6+5r)ZJueWIA-|{$^})he6pqeKEoeeOELL*Q`U1Nj zs&oJMoRo``h>6JF*b0`9kMaNIq?*bAGe%{5dlw?+zdg!~Qg&wcME`y8{o54N;bSsm zGGSq2VP^ptaT;^8G8wV6va*>laWb>An3!>zu?zhFN9ZxCSb70qxwsfLbeR8|X3_iK zQeL)yVc3&Tx3dI0qJ`bu4W|vF2qbAXMvRiU<-4Zn2Ef(3+%p8y6w3`1u!5tXm!=ffO_3LJ-nNQ%JD&w>RrA&4@4Crt=c!U~4IrNIkV8>$m}VOM;C zQJn#8DHkfnxA=UG3DSPk{}Z*Q4;b3g7sv1No;qQ=Vy{ZZtjm)Bqpz0h@5Sz_^i+9v zI&7`9oVXmsqg99Q%FvzW^0w1b+nKanNwC>JdgR^Y9|1-t_3zW=>|*5P;^71^gJol7 O=3s**Cl^} +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) + +``` + + + +All exercises taken from the *OpenIntro Statistics* textbook, $4^{th}$ edition, Chapter 5. + + +# 5.4 Unexpected expenses + +(a) Adults in the United States. + +(b) The proportion of adults in the US who could not cover a $\$400$ expense without borrowing money or going into debt. + +(c) $$\hat{p} = \frac{322}{765} = 0.421$$ + +(d) The standard error ($SE$). + +(e) The formula for the standard error of a proportion can be used to do this: +$$\begin{array}{l} +SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\\ +\phantom{SE} = \sqrt{\frac{0.421(1-0.421)}{765}}\\ +\phantom{SE} = 0.0179 +\end{array}$$ + +(f) The standard error of a point estimate is analogous to a standard deviation of a distribution of a random variable, so the answer to this question is best understood in relation to the number of standard error units between the point estimate ($42\%$) and the news pundit's baseline expectation ($50\%$). Since the difference is $0.5 - 0.42 = 0.8$ and that is more than four times the standard error ($0.0179$ from part e above), the news pundit should be quite surprised. + +(g) Note that this concerns the distinction between $\hat{p}$ and $p$. In this case, the two values are very close ($0.42$ vs. $0.40$). The standard error does not change much: +$$\begin{array}{l} +SE = \sqrt{\frac{p(1-p)}{n}}\\ +\phantom{SE} = \sqrt{\frac{0.40(1-0.40)}{765}}\\ +\phantom{SE} = 0.0177 +\end{array}$$ + +# 5.8 Twitter users and news, Part I + +The general formula for a confidence interval is $point~estimate~±~z^*\times~SE$. Where $z^*$ corresponds to the z-score for the desired value of $\alpha$. + +To estimate the interval from the data described in the question, identify the three different values. The point estimate is 45%, $z^* = 2.58$ for a 99% confidence level (that's the number of standard deviations around the mean that ensure that 99% of a Z-score distribution is included), and $SE = 2.4\%$. +With this we can plug and chug: + +$$52\% ± 2.58 \times 2.4\%$$ +And that yields: +$$95\% CI = (45.8\%, 58.2\%)$$ + +Which means that from this data we are 99% confident that between 45.8% and 58.2% U.S. adult Twitter users get some news through the site. + +# 5.10 Twitter users and news, Part II + +(a) False. See the answer to exercise 5.8 above. With $\alpha = 0.01$, we can consult the 99% confidence interval. It includes 50% but also goes lower. A null hypothesis of $p=0.50$ would not be rejected at this level. + +(b) False. The standard error of the sample proportion does not contain any information about the proportion of the population included in the sample. It estimates the variability of the sample proportion. + +(c) False. All else being equal, increasing the sample size will decrease the standard error. Consider the general formula for a standard error: $\frac{\sigma}{\sqrt{n}}$ or the formula for the standard error of a proportion: $\sqrt{\frac{p(1-p)}{n}}$. A smaller value of $n$ will result in a larger standard error. + +(d) False. All else being equal, a lower/smaller confidence interval will cover a narrower range. A higher/larger interval will cover a wider range. To confirm this, revisit the formula from the previous exercise and plug in the corresponding alpha value of .9, resulting in a $z^*$ value of 1.28 (see the Z-score table in the back of *OpenIntro* and/or calculate this directly with the R command `qnorm(0.9)`). + +# 5.17 Online communication + +Key points here: (1) The hypotheses should be about the population proportion (p), not the sample proportion. (2) The null hypothesis should have an equal sign. (3) The alternative hypothesis should have a not-equals sign and reference the null value rather than the observed sample proportion. + +The correct way to set up these hypotheses is: +$$H_0~:~p = 0.6$$ +$$H_A~:~p \neq 0.6$$ + +# 5.30 True or false +(a) True. See 5.10 part d above. + +(b) False. The alpha value (significance level) *is* the probability of Type 1 Error, so reducing the one reduces the other. + +(c) False. Failure to reject the null ($H_0$) is evidence that we cannot conclude that the true value is different from the null. This is **very** different from evidence that the null hypothesis is true. + +(d) True. We'll revisit this in a moment below, but consider the relationship between a statistical test, the standard error, and the sample size as a sample size grows infinitely large. Given the formula for a standard error, the standard error of arbitrarily large samples approaches zero, resulting in arbitrarily precise point estimates that will result in rejecting the null hypothesis for *any* value of a test statistic for any critical value of $\alpha$. + +# 5.35 Practical vs. statistical significance +True. If the sample size gets ever larger, then the standard error will become ever smaller. Eventually, when the sample size is large enough and the standard error is tiny, we can find statistically significant yet very small differences between the null value and point estimate (assuming they are not exactly equal). + +# 5.36 Same observation, different sample size +As the sample size increases the standard error will decrease, the sample statistic (a Z-score comparing the point estimate against the null hypothesis in all of the examples developed in this chapter) will increase, and the resulting p-value will decrease. -- 2.39.5