1 from sklearn.metrics import silhouette_score
 
   2 from sklearn.cluster import AffinityPropagation
 
   3 from functools import partial
 
   4 from dataclasses import dataclass
 
   5 from clustering import _affinity_clustering, read_similarity_mat, sim_to_dist, process_clustering_result, clustering_result
 
   6 from multiprocessing  import Pool, cpu_count, Array, Process
 
   7 from pathlib import Path
 
   8 from itertools import product, starmap
 
  14 # silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying. 
 
  16 class affinity_clustering_result(clustering_result):
 
  19     preference_quantile:float
 
  21 def affinity_clustering(similarities, output, *args, **kwargs):
 
  22     subreddits, mat = read_similarity_mat(similarities)
 
  23     clustering = _affinity_clustering(mat, *args, **kwargs)
 
  24     cluster_data = process_clustering_result(clustering, subreddits)
 
  25     cluster_data['algorithm'] = 'affinity'
 
  28 def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
 
  30     similarities: matrix of similarity scores
 
  31     preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
 
  32     damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author. 
 
  34     print(f"damping:{damping}; convergenceIter:{convergence_iter}; preferenceQuantile:{preference_quantile}")
 
  36     preference = np.quantile(mat,preference_quantile)
 
  38     print(f"preference is {preference}")
 
  41     clustering = AffinityPropagation(damping=damping,
 
  43                                      convergence_iter=convergence_iter,
 
  45                                      preference=preference,
 
  46                                      affinity='precomputed',
 
  48                                      random_state=random_state).fit(mat)
 
  50     cluster_data = process_clustering_result(clustering, subreddits)
 
  52     output.parent.mkdir(parents=True,exist_ok=True)
 
  53     cluster_data.to_feather(output)
 
  54     print(f"saved {output}")
 
  58 def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits,  max_iter,  outdir:Path, random_state, verbose, alt_mat, overwrite=False):
 
  60         name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}"
 
  63     outpath = outdir / (str(name) + ".feather")
 
  64     outpath.parent.mkdir(parents=True,exist_ok=True)
 
  66     clustering = _affinity_clustering(mat, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose)
 
  67     cluster_data = process_clustering_result(clustering, subreddits)
 
  68     mat = sim_to_dist(clustering.affinity_matrix_)
 
  71         score = silhouette_score(mat, clustering.labels_, metric='precomputed')
 
  75     if alt_mat is not None:
 
  76         alt_distances = sim_to_dist(alt_mat)
 
  78             alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
 
  82     res = affinity_clustering_result(outpath=outpath,
 
  85                                      convergence_iter=convergence_iter,
 
  86                                      preference_quantile=preference_quantile,
 
  87                                      silhouette_score=score,
 
  88                                      alt_silhouette_score=score,
 
  93 # alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
 
  95 def select_affinity_clustering(similarities, outdir, outinfo, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None):
 
  97     damping = list(map(float,damping))
 
  98     convergence_iter = convergence_iter = list(map(int,convergence_iter))
 
  99     preference_quantile = list(map(float,preference_quantile))
 
 101     if type(outdir) is str:
 
 102         outdir = Path(outdir)
 
 104     outdir.mkdir(parents=True,exist_ok=True)
 
 106     subreddits, mat = read_similarity_mat(similarities,use_threads=True)
 
 108     if alt_similarities is not None:
 
 109         alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
 
 117     # get list of tuples: the combinations of hyperparameters
 
 118     hyper_grid = product(damping, convergence_iter, preference_quantile)
 
 119     hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
 
 121     _do_clustering = partial(do_clustering,  mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
 
 123     #    similarities = Array('d', mat)
 
 125     print("running clustering selection")
 
 126     clustering_data = pool.starmap(_do_clustering, hyper_grid)
 
 127     clustering_data = pd.DataFrame(list(clustering_data))
 
 128     clustering_data.to_csv(outinfo)
 
 129     return clustering_data
 
 131 if __name__ == "__main__":
 
 132     x = fire.Fire(select_affinity_clustering)