1 from umap_hdbscan_clustering import umap_hdbscan_job, umap_hdbscan_grid_sweep, umap_hdbscan_clustering_result
2 from lsi_base import twoway_lsi_grid_sweep, lsi_mixin, lsi_result_mixin
3 from grid_sweep import twoway_grid_sweep
5 from dataclasses import dataclass
8 class umap_hdbscan_clustering_result_lsi(umap_hdbscan_clustering_result, lsi_result_mixin):
11 class umap_hdbscan_lsi_job(umap_hdbscan_job, lsi_mixin):
12 def __init__(self, infile, outpath, name, umap_args, hdbscan_args, lsi_dims):
20 super().set_lsi_dims(lsi_dims)
23 partial_result = super().get_info()
24 self.result = umap_hdbscan_clustering_result_lsi(**partial_result.__dict__,
25 lsi_dimensions=self.lsi_dims)
28 class umap_hdbscan_lsi_grid_sweep(twoway_lsi_grid_sweep):
37 super().__init__(umap_hdbscan_lsi_job,
38 _umap_hdbscan_lsi_grid_sweep,
48 class _umap_hdbscan_lsi_grid_sweep(twoway_grid_sweep):
57 self.lsi_dim = lsi_dim
58 self.jobtype = umap_hdbscan_lsi_job
59 super().__init__(self.jobtype, inpath, outpath, self.namer, umap_args, hdbscan_args, lsi_dim)
62 def namer(self, *args, **kwargs):
63 s = umap_hdbscan_grid_sweep.namer(self, *args, **kwargs)
64 s += f"_lsi-{self.lsi_dim}"
67 def run_umap_hdbscan_lsi_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], n_components=[2], learning_rate=[1], min_dist=[1], local_connectivity=[1],
69 min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom'], lsi_dimensions='all'):
70 """Run hdbscan clustering once or more with different parameters.
73 hdbscan_clustering_lsi --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=[eom]> --lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
76 savefile: path to save the metadata and diagnostics
77 inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
78 outpath: path to output fit clusterings.
79 min_cluster_sizes: one or more integers indicating the minumum cluster size
80 min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
81 cluster_selection_epsilons: one or more similarity thresholds for transition from dbscan to hdbscan
82 cluster_selection_methods: one or more of "eom" or "leaf" eom gives larger clusters.
83 lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
87 umap_args = {'n_neighbors':list(map(int, n_neighbors)),
88 'learning_rate':list(map(float,learning_rate)),
89 'min_dist':list(map(float,min_dist)),
90 'local_connectivity':list(map(int,local_connectivity)),
91 'n_components':list(map(int, n_components)),
92 'densmap':list(map(bool,densmap))
95 hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
96 'min_samples':list(map(int,min_samples)),
97 'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
98 'cluster_selection_method':cluster_selection_methods}
100 obj = umap_hdbscan_lsi_grid_sweep(inpath,
112 if __name__ == "__main__":
113 fire.Fire(run_umap_hdbscan_lsi_grid_sweep)