1 from clustering_base import clustering_result, clustering_job, twoway_clustering_job
 
   2 from hdbscan_clustering import hdbscan_clustering_result
 
   4 from grid_sweep import twoway_grid_sweep
 
   5 from dataclasses import dataclass
 
   7 from sklearn.neighbors import NearestNeighbors
 
  10 from itertools import product, starmap, chain
 
  12 from multiprocessing import cpu_count
 
  15 def test_select_hdbscan_clustering():
 
  16     # select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
 
  17     #                           "test_hdbscan_author30k",
 
  18     #                           min_cluster_sizes=[2],
 
  20     #                           cluster_selection_epsilons=[0,0.05,0.1,0.15],
 
  21     #                           cluster_selection_methods=['eom','leaf'],
 
  22     #                           lsi_dimensions='all')
 
  23     inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI"
 
  24     outpath = "test_umap_hdbscan_lsi"
 
  25     min_cluster_sizes=[2,3,4]
 
  27     cluster_selection_epsilons=[0,0.1,0.3,0.5]
 
  28     cluster_selection_methods=[1]
 
  30     n_neighbors = [5,10,15,25,35,70,100]
 
  31     learning_rate = [0.1,0.5,1,2]
 
  32     min_dist = [0.5,1,1.5,2]
 
  33     local_connectivity = [1,2,3,4,5]
 
  35     hdbscan_params = {"min_cluster_sizes":min_cluster_sizes, "min_samples":min_samples, "cluster_selection_epsilons":cluster_selection_epsilons, "cluster_selection_methods":cluster_selection_methods}
 
  36     umap_params = {"n_neighbors":n_neighbors, "learning_rate":learning_rate, "min_dist":min_dist, "local_connectivity":local_connectivity}
 
  37     gs = umap_hdbscan_grid_sweep(inpath, "all", outpath, hdbscan_params,umap_params)
 
  40     # gs.save("test_hdbscan/lsi_sweep.csv")
 
  43     # job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom')
 
  45     # print(job1.get_info())
 
  47     # df = pd.read_csv("test_hdbscan/selection_data.csv")
 
  48     # test_select_hdbscan_clustering()
 
  49     # check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather")
 
  50     # silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather")
 
  51     # c = check_clusters.merge(silscores,on='subreddit')#    fire.Fire(select_hdbscan_clustering)
 
  52 class umap_hdbscan_grid_sweep(twoway_grid_sweep):
 
  59         super().__init__(umap_hdbscan_job, inpath, outpath, self.namer, umap_params, hdbscan_params)
 
  64               cluster_selection_epsilon,
 
  65               cluster_selection_method,
 
  73         return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}_nc-{n_components}_nn-{n_neighbors}_lr-{learning_rate}_md-{min_dist}_lc-{local_connectivity}_dm-{densmap}"
 
  76 class umap_hdbscan_clustering_result(hdbscan_clustering_result):
 
  81     local_connectivity:int
 
  84 class umap_hdbscan_job(twoway_clustering_job):
 
  85     def __init__(self, infile, outpath, name,
 
  86                  umap_args = {"n_components":2,"n_neighbors":15, "learning_rate":1, "min_dist":1, "local_connectivity":1,'densmap':False},
 
  87                  hdbscan_args = {"min_cluster_size":2, "min_samples":1, "cluster_selection_epsilon":0, "cluster_selection_method":'eom'},
 
  90         super().__init__(infile,
 
  93                          call1=umap_hdbscan_job._umap_embedding,
 
  94                          call2=umap_hdbscan_job._hdbscan_clustering,
 
 101         self.n_components = umap_args['n_components']
 
 102         self.n_neighbors = umap_args['n_neighbors']
 
 103         self.learning_rate = umap_args['learning_rate']
 
 104         self.min_dist = umap_args['min_dist']
 
 105         self.local_connectivity = umap_args['local_connectivity']
 
 106         self.densmap = umap_args['densmap']
 
 107         self.min_cluster_size = hdbscan_args['min_cluster_size']
 
 108         self.min_samples = hdbscan_args['min_samples']
 
 109         self.cluster_selection_epsilon = hdbscan_args['cluster_selection_epsilon']
 
 110         self.cluster_selection_method = hdbscan_args['cluster_selection_method']
 
 113         coords = self.step1.emedding_
 
 114         self.cluster_data['x'] = coords[:,0]
 
 115         self.cluster_data['y'] = coords[:,1]
 
 119     def _umap_embedding(mat, **umap_args):
 
 120         print(f"running umap embedding. umap_args:{umap_args}")
 
 121         umapmodel = umap.UMAP(metric='precomputed', **umap_args)
 
 122         umapmodel = umapmodel.fit(mat)
 
 125     def _hdbscan_clustering(mat, umapmodel, **hdbscan_args):
 
 126         print(f"running hdbascan clustering. hdbscan_args:{hdbscan_args}")
 
 128         umap_coords = umapmodel.transform(mat)
 
 130         clusterer = hdbscan.HDBSCAN(metric='euclidean',
 
 131                                     core_dist_n_jobs=cpu_count(),
 
 135         clustering = clusterer.fit(umap_coords)
 
 140         result = super().get_info()
 
 141         self.result = umap_hdbscan_clustering_result(**result.__dict__,
 
 142                                                      min_cluster_size=self.min_cluster_size,
 
 143                                                      min_samples=self.min_samples,
 
 144                                                      cluster_selection_epsilon=self.cluster_selection_epsilon,
 
 145                                                      cluster_selection_method=self.cluster_selection_method,
 
 146                                                      n_components = self.n_components,
 
 147                                                      n_neighbors = self.n_neighbors,
 
 148                                                      learning_rate = self.learning_rate,
 
 149                                                      min_dist = self.min_dist,
 
 150                                                      local_connectivity=self.local_connectivity,
 
 155 def run_umap_hdbscan_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], n_components=[2], learning_rate=[1], min_dist=[1], local_connectivity=[1],
 
 157                                 min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom']):
 
 158     """Run umap + hdbscan clustering once or more with different parameters.
 
 161     umap_hdbscan_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --n_neighbors=<csv> --learning_rate=<csv> --min_dist=<csv> --local_connectivity=<csv> --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=<csv "eom"|"leaf">
 
 164     savefile: path to save the metadata and diagnostics 
 
 165     inpath: path to feather data containing a labeled matrix of subreddit similarities.
 
 166     outpath: path to output fit kmeans clusterings.
 
 167     n_neighbors: umap parameter takes integers greater than 1
 
 168     learning_rate: umap parameter takes positive real values
 
 169     min_dist: umap parameter takes positive real values
 
 170     local_connectivity: umap parameter takes positive integers
 
 171     min_cluster_sizes: one or more integers indicating the minumum cluster size
 
 172     min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
 
 173     cluster_selection_epsilon: one or more similarity thresholds for transition from dbscan to hdbscan
 
 174     cluster_selection_method: "eom" or "leaf" eom gives larger clusters. 
 
 177     umap_args = {'n_neighbors':list(map(int, n_neighbors)),
 
 178                  'learning_rate':list(map(float,learning_rate)),
 
 179                  'min_dist':list(map(float,min_dist)),
 
 180                  'local_connectivity':list(map(int,local_connectivity)),
 
 181                  'n_components':list(map(int, n_components)),
 
 182                  'densmap':list(map(bool,densmap))
 
 185     hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
 
 186                     'min_samples':list(map(int,min_samples)),
 
 187                     'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
 
 188                     'cluster_selection_method':cluster_selection_methods}
 
 190     obj = umap_hdbscan_grid_sweep(inpath,
 
 198 def KNN_distances_plot(mat,outname,k=2):
 
 199     nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat)
 
 200     distances, indices = nbrs.kneighbors(mat)
 
 202     df = pd.DataFrame({'dist':d2})
 
 203     df = df.sort_values("dist",ascending=False)
 
 204     df['idx'] = np.arange(0,d2.shape[0]) + 1
 
 205     p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50,
 
 206                                                                                       breaks = np.arange(0,10)/10)
 
 207     p.save(outname,width=16,height=10)
 
 209 def make_KNN_plots():
 
 210     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather"
 
 211     subreddits, mat = read_similarity_mat(similarities)
 
 212     mat = sim_to_dist(mat)
 
 214     KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png')
 
 216     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather"
 
 217     subreddits, mat = read_similarity_mat(similarities)
 
 218     mat = sim_to_dist(mat)
 
 219     KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png')
 
 221     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather"
 
 222     subreddits, mat = read_similarity_mat(similarities)
 
 223     mat = sim_to_dist(mat)
 
 224     KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png')
 
 226 if __name__ == "__main__":
 
 227     fire.Fire(run_umap_hdbscan_grid_sweep)
 
 229 #    test_select_hdbscan_clustering()
 
 230     #fire.Fire(select_hdbscan_clustering)