]> code.communitydata.science - cdsc_reddit.git/blob - similarities/similarities_helper.py
69516a6abfd69b28e70f7bbf02ec923745da10b3
[cdsc_reddit.git] / similarities / similarities_helper.py
1 from pyspark.sql import SparkSession
2 from pyspark.sql import Window
3 from pyspark.sql import functions as f
4 from enum import Enum
5 from pyspark.mllib.linalg.distributed import CoordinateMatrix
6 from tempfile import TemporaryDirectory
7 import pyarrow
8 import pyarrow.dataset as ds
9 from scipy.sparse import csr_matrix, issparse
10 import pandas as pd
11 import numpy as np
12 import pathlib
13 from datetime import datetime
14 from pathlib import Path
15
16 class tf_weight(Enum):
17     MaxTF = 1
18     Norm05 = 2
19
20 infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet"
21
22 def reindex_tfidf_time_interval(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
23     term = term_colname
24     term_id = term + '_id'
25     term_id_new = term + '_id_new'
26
27     spark = SparkSession.builder.getOrCreate()
28     conf = spark.sparkContext.getConf()
29     print(exclude_phrases)
30     tfidf_weekly = spark.read.parquet(infile)
31
32     # create the time interval
33     if from_date is not None:
34         if type(from_date) is str:
35             from_date = datetime.fromisoformat(from_date)
36
37         tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week >= from_date)
38         
39     if to_date is not None:
40         if type(to_date) is str:
41             to_date = datetime.fromisoformat(to_date)
42         tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week < to_date)
43
44     tfidf = tfidf_weekly.groupBy(["subreddit","week", term_id, term]).agg(f.sum("tf").alias("tf"))
45     tfidf = _calc_tfidf(tfidf, term_colname, tf_weight.Norm05)
46     tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
47     tfidf = spark.read_parquet(tempdir.name)
48     subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
49     subreddit_names = subreddit_names.sort_values("subreddit_id_new")
50     subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
51     return(tempdir, subreddit_names)
52
53 def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
54     spark = SparkSession.builder.getOrCreate()
55     conf = spark.sparkContext.getConf()
56     print(exclude_phrases)
57
58     tfidf = spark.read.parquet(infile)
59
60     if included_subreddits is None:
61         included_subreddits = select_topN_subreddits(topN)
62     else:
63         included_subreddits = set(open(included_subreddits))
64
65     if exclude_phrases == True:
66         tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
67
68     print("creating temporary parquet with matrix indicies")
69     tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
70
71     tfidf = spark.read.parquet(tempdir.name)
72     subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
73     subreddit_names = subreddit_names.sort_values("subreddit_id_new")
74     subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
75     spark.stop()
76     return (tempdir, subreddit_names)
77
78 def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
79
80     if from_date is not None or to_date is not None:
81         tempdir, subreddit_names = reindex_tfidf_time_interval(infile, term_colname='author', min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False, from_date=from_date, to_date=to_date)
82         
83     else:
84         tempdir, subreddit_names = reindex_tfidf(infile, term_colname='author', min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False)
85
86     print("loading matrix")
87     #    mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname)
88     mat = read_tfidf_matrix(tempdir.name, term_colname)
89     print('computing similarities')
90     sims = simfunc(mat)
91     del mat
92
93     if issparse(sims):
94         sims = sims.todense()
95
96     print(f"shape of sims:{sims.shape}")
97     print(f"len(subreddit_names.subreddit.values):{len(subreddit_names.subreddit.values)}")
98     sims = pd.DataFrame(sims)
99     sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
100     sims['subreddit'] = subreddit_names.subreddit.values
101
102     p = Path(outfile)
103
104     output_feather =  Path(str(p).replace("".join(p.suffixes), ".feather"))
105     output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv"))
106     output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet"))
107
108     sims.to_feather(outfile)
109     tempdir.cleanup()
110
111 def read_tfidf_matrix_weekly(path, term_colname, week):
112     term = term_colname
113     term_id = term + '_id'
114     term_id_new = term + '_id_new'
115
116     dataset = ds.dataset(path,format='parquet')
117     entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new],filter=ds.field('week')==week).to_pandas()
118     return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1))))
119
120 def write_weekly_similarities(path, sims, week, names):
121     sims['week'] = week
122     p = pathlib.Path(path)
123     if not p.is_dir():
124         p.mkdir()
125         
126     # reformat as a pairwise list
127     sims = sims.melt(id_vars=['subreddit','week'],value_vars=names.subreddit.values)
128     sims.to_parquet(p / week.isoformat())
129
130 def read_tfidf_matrix(path,term_colname):
131     term = term_colname
132     term_id = term + '_id'
133     term_id_new = term + '_id_new'
134
135     dataset = ds.dataset(path,format='parquet')
136     entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new]).to_pandas()
137     return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1))))
138     
139 def column_overlaps(mat):
140     non_zeros = (mat != 0).astype('double')
141     
142     intersection = non_zeros.T @ non_zeros
143     card1 = non_zeros.sum(axis=0)
144     den = np.add.outer(card1,card1) - intersection
145
146     return intersection / den
147     
148 def column_similarities(mat):
149     norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
150     mat = mat.multiply(1/norm)
151     sims = mat.T @ mat
152     return(sims)
153
154
155 def prep_tfidf_entries_weekly(tfidf, term_colname, min_df, max_df, included_subreddits):
156     term = term_colname
157     term_id = term + '_id'
158     term_id_new = term + '_id_new'
159
160     if min_df is None:
161         min_df = 0.1 * len(included_subreddits)
162         tfidf = tfidf.filter(f.col('count') >= min_df)
163     if max_df is not None:
164         tfidf = tfidf.filter(f.col('count') <= max_df)
165
166     tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
167
168     # we might not have the same terms or subreddits each week, so we need to make unique ids for each week.
169     sub_ids = tfidf.select(['subreddit_id','week']).distinct()
170     sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.partitionBy('week').orderBy("subreddit_id")))
171     tfidf = tfidf.join(sub_ids,['subreddit_id','week'])
172
173     # only use terms in at least min_df included subreddits in a given week
174     new_count = tfidf.groupBy([term_id,'week']).agg(f.count(term_id).alias('new_count'))
175     tfidf = tfidf.join(new_count,[term_id,'week'],how='inner')
176
177     # reset the term ids
178     term_ids = tfidf.select([term_id,'week']).distinct()
179     term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.partitionBy('week').orderBy(term_id)))
180     tfidf = tfidf.join(term_ids,[term_id,'week'])
181
182     tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
183     tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
184
185     tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
186
187     tfidf = tfidf.repartition('week')
188
189     tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
190     return(tempdir)
191     
192
193 def prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits):
194     term = term_colname
195     term_id = term + '_id'
196     term_id_new = term + '_id_new'
197
198     if min_df is None:
199         min_df = 0.1 * len(included_subreddits)
200         tfidf = tfidf.filter(f.col('count') >= min_df)
201     if max_df is not None:
202         tfidf = tfidf.filter(f.col('count') <= max_df)
203
204     tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
205
206     # reset the subreddit ids
207     sub_ids = tfidf.select('subreddit_id').distinct()
208     sub_ids = sub_ids.withColumn("subreddit_id_new", f.row_number().over(Window.orderBy("subreddit_id")))
209     tfidf = tfidf.join(sub_ids,'subreddit_id')
210
211     # only use terms in at least min_df included subreddits
212     new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
213     tfidf = tfidf.join(new_count,term_id,how='inner')
214     
215     # reset the term ids
216     term_ids = tfidf.select([term_id]).distinct()
217     term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
218     tfidf = tfidf.join(term_ids,term_id)
219
220     tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
221     tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
222     
223     tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
224     
225     tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
226     return tempdir
227
228
229 # try computing cosine similarities using spark
230 def spark_cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
231     term = term_colname
232     term_id = term + '_id'
233     term_id_new = term + '_id_new'
234
235     if min_df is None:
236         min_df = 0.1 * len(included_subreddits)
237
238     tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
239     tfidf = tfidf.cache()
240
241     # reset the subreddit ids
242     sub_ids = tfidf.select('subreddit_id').distinct()
243     sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
244     tfidf = tfidf.join(sub_ids,'subreddit_id')
245
246     # only use terms in at least min_df included subreddits
247     new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
248     tfidf = tfidf.join(new_count,term_id,how='inner')
249     
250     # reset the term ids
251     term_ids = tfidf.select([term_id]).distinct()
252     term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
253     tfidf = tfidf.join(term_ids,term_id)
254
255     tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
256     tfidf = tfidf.withColumn("tf_idf", tfidf.relative_tf * tfidf.idf)
257
258     # step 1 make an rdd of entires
259     # sorted by (dense) spark subreddit id
260     n_partitions = int(len(included_subreddits)*2 / 5)
261
262     entries = tfidf.select(f.col(term_id_new)-1,f.col("subreddit_id_new")-1,"tf_idf").rdd.repartition(n_partitions)
263
264     # put like 10 subredis in each partition
265
266     # step 2 make it into a distributed.RowMatrix
267     coordMat = CoordinateMatrix(entries)
268
269     coordMat = CoordinateMatrix(coordMat.entries.repartition(n_partitions))
270
271     # this needs to be an IndexedRowMatrix()
272     mat = coordMat.toRowMatrix()
273
274     #goal: build a matrix of subreddit columns and tf-idfs rows
275     sim_dist = mat.columnSimilarities(threshold=similarity_threshold)
276
277     return (sim_dist, tfidf)
278
279
280 def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
281     term = term_colname
282     term_id = term + '_id'
283
284     # aggregate counts by week. now subreddit-term is distinct
285     df = df.filter(df.subreddit.isin(include_subs))
286     df = df.groupBy(['subreddit',term,'week']).agg(f.sum('tf').alias('tf'))
287
288     max_subreddit_terms = df.groupby(['subreddit','week']).max('tf') # subreddits are unique
289     max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
290     df = df.join(max_subreddit_terms, on=['subreddit','week'])
291     df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
292
293     # group by term. term is unique
294     idf = df.groupby([term,'week']).count()
295
296     N_docs = df.select(['subreddit','week']).distinct().groupby(['week']).agg(f.count("subreddit").alias("subreddits_in_week"))
297
298     idf = idf.join(N_docs, on=['week'])
299
300     # add a little smoothing to the idf
301     idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
302
303     # collect the dictionary to make a pydict of terms to indexes
304     terms = idf.select([term,'week']).distinct() # terms are distinct
305
306     terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
307
308     # make subreddit ids
309     subreddits = df.select(['subreddit','week']).distinct()
310     subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
311
312     df = df.join(subreddits,on=['subreddit','week'])
313
314     # map terms to indexes in the tfs and the idfs
315     df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
316
317     idf = idf.join(terms,on=[term,'week'])
318
319     # join on subreddit/term to create tf/dfs indexed by term
320     df = df.join(idf, on=[term_id, term,'week'])
321
322     # agg terms by subreddit to make sparse tf/df vectors
323     
324     if tf_family == tf_weight.MaxTF:
325         df = df.withColumn("tf_idf",  df.relative_tf * df.idf)
326     else: # tf_fam = tf_weight.Norm05
327         df = df.withColumn("tf_idf",  (0.5 + 0.5 * df.relative_tf) * df.idf)
328
329     return df
330
331 def _calc_tfidf(df, term_colname, tf_family):
332     term = term_colname
333     term_id = term + '_id'
334
335     max_subreddit_terms = df.groupby(['subreddit']).max('tf') # subreddits are unique
336     max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
337
338     df = df.join(max_subreddit_terms, on='subreddit')
339
340     df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
341
342     # group by term. term is unique
343     idf = df.groupby([term]).count()
344     N_docs = df.select('subreddit').distinct().count()
345     # add a little smoothing to the idf
346     idf = idf.withColumn('idf',f.log(N_docs/(1+f.col('count')))+1)
347
348     # collect the dictionary to make a pydict of terms to indexes
349     terms = idf.select(term).distinct() # terms are distinct
350     terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
351
352     # make subreddit ids
353     subreddits = df.select(['subreddit']).distinct()
354     subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
355
356     df = df.join(subreddits,on='subreddit')
357
358     # map terms to indexes in the tfs and the idfs
359     df = df.join(terms,on=term) # subreddit-term-id is unique
360
361     idf = idf.join(terms,on=term)
362
363     # join on subreddit/term to create tf/dfs indexed by term
364     df = df.join(idf, on=[term_id, term])
365
366     # agg terms by subreddit to make sparse tf/df vectors
367     if tf_family == tf_weight.MaxTF:
368         df = df.withColumn("tf_idf",  df.relative_tf * df.idf)
369     else: # tf_fam = tf_weight.Norm05
370         df = df.withColumn("tf_idf",  (0.5 + 0.5 * df.relative_tf) * df.idf)
371
372     return df
373     
374
375 def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
376     term = term_colname
377     term_id = term + '_id'
378     # aggregate counts by week. now subreddit-term is distinct
379     df = df.filter(df.subreddit.isin(include_subs))
380     df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf'))
381
382     df = _calc_tfidf(df, term_colname, tf_family)
383
384     return df
385
386 def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv"):
387     rankdf = pd.read_csv(path)
388     included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
389     return included_subreddits

Community Data Science Collective || Want to submit a patch?