1 from clustering_base import clustering_result, clustering_job, twoway_clustering_job
2 from hdbscan_clustering import hdbscan_clustering_result
4 from grid_sweep import twoway_grid_sweep
5 from dataclasses import dataclass
7 from sklearn.neighbors import NearestNeighbors
10 from itertools import product, starmap, chain
12 from multiprocessing import cpu_count
15 def test_select_hdbscan_clustering():
16 # select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
17 # "test_hdbscan_author30k",
18 # min_cluster_sizes=[2],
20 # cluster_selection_epsilons=[0,0.05,0.1,0.15],
21 # cluster_selection_methods=['eom','leaf'],
22 # lsi_dimensions='all')
23 inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI"
24 outpath = "test_umap_hdbscan_lsi"
25 min_cluster_sizes=[2,3,4]
27 cluster_selection_epsilons=[0,0.1,0.3,0.5]
28 cluster_selection_methods=[1]
30 n_neighbors = [5,10,15,25,35,70,100]
31 learning_rate = [0.1,0.5,1,2]
32 min_dist = [0.5,1,1.5,2]
33 local_connectivity = [1,2,3,4,5]
35 hdbscan_params = {"min_cluster_sizes":min_cluster_sizes, "min_samples":min_samples, "cluster_selection_epsilons":cluster_selection_epsilons, "cluster_selection_methods":cluster_selection_methods}
36 umap_params = {"n_neighbors":n_neighbors, "learning_rate":learning_rate, "min_dist":min_dist, "local_connectivity":local_connectivity}
37 gs = umap_hdbscan_grid_sweep(inpath, "all", outpath, hdbscan_params,umap_params)
40 # gs.save("test_hdbscan/lsi_sweep.csv")
43 # job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom')
45 # print(job1.get_info())
47 # df = pd.read_csv("test_hdbscan/selection_data.csv")
48 # test_select_hdbscan_clustering()
49 # check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather")
50 # silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather")
51 # c = check_clusters.merge(silscores,on='subreddit')# fire.Fire(select_hdbscan_clustering)
52 class umap_hdbscan_grid_sweep(twoway_grid_sweep):
59 super().__init__(umap_hdbscan_job, inpath, outpath, self.namer, umap_params, hdbscan_params)
64 cluster_selection_epsilon,
65 cluster_selection_method,
71 return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}_nn-{n_neighbors}_lr-{learning_rate}_md-{min_dist}_lc-{local_connectivity}"
74 class umap_hdbscan_clustering_result(hdbscan_clustering_result):
78 local_connectivity:int
80 class umap_hdbscan_job(twoway_clustering_job):
81 def __init__(self, infile, outpath, name,
82 umap_args = {"n_neighbors":15, "learning_rate":1, "min_dist":1, "local_connectivity":1},
83 hdbscan_args = {"min_cluster_size":2, "min_samples":1, "cluster_selection_epsilon":0, "cluster_selection_method":'eom'},
87 super().__init__(infile,
90 call1=umap_hdbscan_job._umap_embedding,
91 call2=umap_hdbscan_job._hdbscan_clustering,
94 save_step1=save_step1,
99 self.n_neighbors = umap_args['n_neighbors']
100 self.learning_rate = umap_args['learning_rate']
101 self.min_dist = umap_args['min_dist']
102 self.local_connectivity = umap_args['local_connectivity']
103 self.min_cluster_size = hdbscan_args['min_cluster_size']
104 self.min_samples = hdbscan_args['min_samples']
105 self.cluster_selection_epsilon = hdbscan_args['cluster_selection_epsilon']
106 self.cluster_selection_method = hdbscan_args['cluster_selection_method']
109 coords = self.step1.emedding_
110 self.cluster_data['x'] = coords[:,0]
111 self.cluster_data['y'] = coords[:,1]
115 def _umap_embedding(mat, **umap_args):
116 print(f"running umap embedding. umap_args:{umap_args}")
117 umapmodel = umap.UMAP(metric='precomputed', **umap_args)
118 umapmodel = umapmodel.fit(mat)
121 def _hdbscan_clustering(mat, umapmodel, **hdbscan_args):
122 print(f"running hdbascan clustering. hdbscan_args:{hdbscan_args}")
124 umap_coords = umapmodel.transform(mat)
126 clusterer = hdbscan.HDBSCAN(metric='euclidean',
127 core_dist_n_jobs=cpu_count(),
131 clustering = clusterer.fit(umap_coords)
136 result = super().get_info()
137 self.result = umap_hdbscan_clustering_result(**result.__dict__,
138 min_cluster_size=self.min_cluster_size,
139 min_samples=self.min_samples,
140 cluster_selection_epsilon=self.cluster_selection_epsilon,
141 cluster_selection_method=self.cluster_selection_method,
142 n_neighbors = self.n_neighbors,
143 learning_rate = self.learning_rate,
144 min_dist = self.min_dist,
145 local_connectivity=self.local_connectivity
149 def run_umap_hdbscan_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], learning_rate=[1], min_dist=[1], local_connectivity=[1],
150 min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom']):
151 """Run umap + hdbscan clustering once or more with different parameters.
154 umap_hdbscan_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --n_neighbors=<csv> --learning_rate=<csv> --min_dist=<csv> --local_connectivity=<csv> --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=<csv "eom"|"leaf">
157 savefile: path to save the metadata and diagnostics
158 inpath: path to feather data containing a labeled matrix of subreddit similarities.
159 outpath: path to output fit kmeans clusterings.
160 n_neighbors: umap parameter takes integers greater than 1
161 learning_rate: umap parameter takes positive real values
162 min_dist: umap parameter takes positive real values
163 local_connectivity: umap parameter takes positive integers
164 min_cluster_sizes: one or more integers indicating the minumum cluster size
165 min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
166 cluster_selection_epsilon: one or more similarity thresholds for transition from dbscan to hdbscan
167 cluster_selection_method: "eom" or "leaf" eom gives larger clusters.
170 umap_args = {'n_neighbors':list(map(int, n_neighbors)),
171 'learning_rate':list(map(float,learning_rate)),
172 'min_dist':list(map(float,min_dist)),
173 'local_connectivity':list(map(int,local_connectivity)),
176 hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
177 'min_samples':list(map(int,min_samples)),
178 'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
179 'cluster_selection_method':cluster_selection_methods}
181 obj = umap_hdbscan_grid_sweep(inpath,
189 def KNN_distances_plot(mat,outname,k=2):
190 nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat)
191 distances, indices = nbrs.kneighbors(mat)
193 df = pd.DataFrame({'dist':d2})
194 df = df.sort_values("dist",ascending=False)
195 df['idx'] = np.arange(0,d2.shape[0]) + 1
196 p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50,
197 breaks = np.arange(0,10)/10)
198 p.save(outname,width=16,height=10)
200 def make_KNN_plots():
201 similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather"
202 subreddits, mat = read_similarity_mat(similarities)
203 mat = sim_to_dist(mat)
205 KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png')
207 similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather"
208 subreddits, mat = read_similarity_mat(similarities)
209 mat = sim_to_dist(mat)
210 KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png')
212 similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather"
213 subreddits, mat = read_similarity_mat(similarities)
214 mat = sim_to_dist(mat)
215 KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png')
217 if __name__ == "__main__":
218 fire.Fire(run_umap_hdbscan_grid_sweep)
220 # test_select_hdbscan_clustering()
221 #fire.Fire(select_hdbscan_clustering)