]> code.communitydata.science - cdsc_reddit.git/blob - clustering/umap_hdbscan_clustering.py
6a4d2a1488217aec9e4d4f23d1ed519c3b030d9e
[cdsc_reddit.git] / clustering / umap_hdbscan_clustering.py
1 from clustering_base import clustering_result, clustering_job, twoway_clustering_job
2 from hdbscan_clustering import hdbscan_clustering_result
3 import umap
4 from grid_sweep import twoway_grid_sweep
5 from dataclasses import dataclass
6 import hdbscan
7 from sklearn.neighbors import NearestNeighbors
8 import plotnine as pn
9 import numpy as np
10 from itertools import product, starmap, chain
11 import pandas as pd
12 from multiprocessing import cpu_count
13 import fire
14
15 def test_select_hdbscan_clustering():
16     # select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
17     #                           "test_hdbscan_author30k",
18     #                           min_cluster_sizes=[2],
19     #                           min_samples=[1,2],
20     #                           cluster_selection_epsilons=[0,0.05,0.1,0.15],
21     #                           cluster_selection_methods=['eom','leaf'],
22     #                           lsi_dimensions='all')
23     inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI"
24     outpath = "test_umap_hdbscan_lsi"
25     min_cluster_sizes=[2,3,4]
26     min_samples=[1,2,3]
27     cluster_selection_epsilons=[0,0.1,0.3,0.5]
28     cluster_selection_methods=[1]
29     lsi_dimensions='all'
30     n_neighbors = [5,10,15,25,35,70,100]
31     learning_rate = [0.1,0.5,1,2]
32     min_dist = [0.5,1,1.5,2]
33     local_connectivity = [1,2,3,4,5]
34
35     hdbscan_params = {"min_cluster_sizes":min_cluster_sizes, "min_samples":min_samples, "cluster_selection_epsilons":cluster_selection_epsilons, "cluster_selection_methods":cluster_selection_methods}
36     umap_params = {"n_neighbors":n_neighbors, "learning_rate":learning_rate, "min_dist":min_dist, "local_connectivity":local_connectivity}
37     gs = umap_hdbscan_grid_sweep(inpath, "all", outpath, hdbscan_params,umap_params)
38
39     # gs.run(20)
40     # gs.save("test_hdbscan/lsi_sweep.csv")
41
42
43     # job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom')
44     # job1.run()
45     # print(job1.get_info())
46
47     # df = pd.read_csv("test_hdbscan/selection_data.csv")
48     # test_select_hdbscan_clustering()
49     # check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather")
50     # silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather")
51     # c = check_clusters.merge(silscores,on='subreddit')#    fire.Fire(select_hdbscan_clustering)
52 class umap_hdbscan_grid_sweep(twoway_grid_sweep):
53     def __init__(self,
54                  inpath,
55                  outpath,
56                  umap_params,
57                  hdbscan_params):
58
59         super().__init__(umap_hdbscan_job, inpath, outpath, self.namer, umap_params, hdbscan_params)
60
61     def namer(self,
62               min_cluster_size,
63               min_samples,
64               cluster_selection_epsilon,
65               cluster_selection_method,
66               n_neighbors,
67               learning_rate,
68               min_dist,
69               local_connectivity
70               ):
71         return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}_nn-{n_neighbors}_lr-{learning_rate}_md-{min_dist}_lc-{local_connectivity}"
72
73 @dataclass
74 class umap_hdbscan_clustering_result(hdbscan_clustering_result):
75     n_neighbors:int
76     learning_rate:float
77     min_dist:float
78     local_connectivity:int
79
80 class umap_hdbscan_job(twoway_clustering_job):
81     def __init__(self, infile, outpath, name,
82                  umap_args = {"n_neighbors":15, "learning_rate":1, "min_dist":1, "local_connectivity":1},
83                  hdbscan_args = {"min_cluster_size":2, "min_samples":1, "cluster_selection_epsilon":0, "cluster_selection_method":'eom'},
84                  save_step1 = False,
85                  *args,
86                  **kwargs):
87         super().__init__(infile,
88                          outpath,
89                          name,
90                          call1=umap_hdbscan_job._umap_embedding,
91                          call2=umap_hdbscan_job._hdbscan_clustering,
92                          args1=umap_args,
93                          args2=hdbscan_args,
94                          save_step1=save_step1,
95                          *args,
96                          **kwargs
97                          )
98
99         self.n_neighbors = umap_args['n_neighbors']
100         self.learning_rate = umap_args['learning_rate']
101         self.min_dist = umap_args['min_dist']
102         self.local_connectivity = umap_args['local_connectivity']
103         self.min_cluster_size = hdbscan_args['min_cluster_size']
104         self.min_samples = hdbscan_args['min_samples']
105         self.cluster_selection_epsilon = hdbscan_args['cluster_selection_epsilon']
106         self.cluster_selection_method = hdbscan_args['cluster_selection_method']
107
108     def after_run(self):
109         coords = self.step1.emedding_
110         self.cluster_data['x'] = coords[:,0]
111         self.cluster_data['y'] = coords[:,1]
112         super().after_run()
113
114
115     def _umap_embedding(mat, **umap_args):
116         print(f"running umap embedding. umap_args:{umap_args}")
117         umapmodel = umap.UMAP(metric='precomputed', **umap_args)
118         umapmodel = umapmodel.fit(mat)
119         return umapmodel
120
121     def _hdbscan_clustering(mat, umapmodel, **hdbscan_args):
122         print(f"running hdbascan clustering. hdbscan_args:{hdbscan_args}")
123         
124         umap_coords = umapmodel.transform(mat)
125
126         clusterer = hdbscan.HDBSCAN(metric='euclidean',
127                                     core_dist_n_jobs=cpu_count(),
128                                     **hdbscan_args
129                                     )
130     
131         clustering = clusterer.fit(umap_coords)
132     
133         return(clustering)
134
135     def get_info(self):
136         result = super().get_info()
137         self.result = umap_hdbscan_clustering_result(**result.__dict__,
138                                                      min_cluster_size=self.min_cluster_size,
139                                                      min_samples=self.min_samples,
140                                                      cluster_selection_epsilon=self.cluster_selection_epsilon,
141                                                      cluster_selection_method=self.cluster_selection_method,
142                                                      n_neighbors = self.n_neighbors,
143                                                      learning_rate = self.learning_rate,
144                                                      min_dist = self.min_dist,
145                                                      local_connectivity=self.local_connectivity
146                                                      )
147         return self.result
148
149 def run_umap_hdbscan_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], learning_rate=[1], min_dist=[1], local_connectivity=[1],
150                                 min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom']):
151     """Run umap + hdbscan clustering once or more with different parameters.
152     
153     Usage:
154     umap_hdbscan_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --n_neighbors=<csv> --learning_rate=<csv> --min_dist=<csv> --local_connectivity=<csv> --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=<csv "eom"|"leaf">
155
156     Keword arguments:
157     savefile: path to save the metadata and diagnostics 
158     inpath: path to feather data containing a labeled matrix of subreddit similarities.
159     outpath: path to output fit kmeans clusterings.
160     n_neighbors: umap parameter takes integers greater than 1
161     learning_rate: umap parameter takes positive real values
162     min_dist: umap parameter takes positive real values
163     local_connectivity: umap parameter takes positive integers
164     min_cluster_sizes: one or more integers indicating the minumum cluster size
165     min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
166     cluster_selection_epsilon: one or more similarity thresholds for transition from dbscan to hdbscan
167     cluster_selection_method: "eom" or "leaf" eom gives larger clusters. 
168     """    
169     
170     umap_args = {'n_neighbors':list(map(int, n_neighbors)),
171                  'learning_rate':list(map(float,learning_rate)),
172                  'min_dist':list(map(float,min_dist)),
173                  'local_connectivity':list(map(int,local_connectivity)),
174                  }
175
176     hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
177                     'min_samples':list(map(int,min_samples)),
178                     'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
179                     'cluster_selection_method':cluster_selection_methods}
180
181     obj = umap_hdbscan_grid_sweep(inpath,
182                                   outpath,
183                                   umap_args,
184                                   hdbscan_args)
185     obj.run(cores=10)
186     obj.save(savefile)
187
188     
189 def KNN_distances_plot(mat,outname,k=2):
190     nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat)
191     distances, indices = nbrs.kneighbors(mat)
192     d2 = distances[:,-1]
193     df = pd.DataFrame({'dist':d2})
194     df = df.sort_values("dist",ascending=False)
195     df['idx'] = np.arange(0,d2.shape[0]) + 1
196     p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50,
197                                                                                       breaks = np.arange(0,10)/10)
198     p.save(outname,width=16,height=10)
199     
200 def make_KNN_plots():
201     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather"
202     subreddits, mat = read_similarity_mat(similarities)
203     mat = sim_to_dist(mat)
204
205     KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png')
206
207     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather"
208     subreddits, mat = read_similarity_mat(similarities)
209     mat = sim_to_dist(mat)
210     KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png')
211
212     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather"
213     subreddits, mat = read_similarity_mat(similarities)
214     mat = sim_to_dist(mat)
215     KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png')
216
217 if __name__ == "__main__":
218     fire.Fire(run_umap_hdbscan_grid_sweep)
219     
220 #    test_select_hdbscan_clustering()
221     #fire.Fire(select_hdbscan_clustering)  

Community Data Science Collective || Want to submit a patch?