2 from pyspark.sql import functions as f
 
   3 from pyspark.sql import SparkSession
 
   4 from pyspark.sql import Window
 
   7 import pyarrow.dataset as ds
 
  10 from itertools import islice, chain
 
  11 from pathlib import Path
 
  12 from similarities_helper import pull_tfidf, column_similarities, write_weekly_similarities, lsi_column_similarities
 
  13 from scipy.sparse import csr_matrix
 
  14 from multiprocessing import Pool, cpu_count
 
  15 from functools import partial
 
  17 infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_10k.parquet"
 
  18 tfidf_path = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/tfidf/comment_authors_compex.parquet"
 
  20 included_subreddits="/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/included_subreddits.txt"
 
  24 # outfile = '/gscratch/comdata/output/reddit_similarity/weekly/comment_authors_test.parquet'
 
  25 # included_subreddits=None
 
  27 def _week_similarities(week, simfunc, tfidf_path, term_colname, min_df, max_df, included_subreddits, topN, outdir:Path, subreddit_names, nterms):
 
  29     term_id = term + '_id'
 
  30     term_id_new = term + '_id_new'
 
  31     print(f"loading matrix: {week}")
 
  33     entries = pull_tfidf(infile = tfidf_path,
 
  34                          term_colname=term_colname,
 
  37                          included_subreddits=included_subreddits,
 
  42     tfidf_colname='tf_idf'
 
  43     # if the max subreddit id we found is less than the number of subreddit names then we have to fill in 0s
 
  44     mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new]-1, entries.subreddit_id_new-1)),shape=(nterms,subreddit_names.shape[0]))
 
  46     print('computing similarities')
 
  49     sims = pd.DataFrame(sims)
 
  50     sims = sims.rename({i: sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
 
  51     sims['_subreddit'] = subreddit_names.subreddit.values
 
  52     outfile = str(Path(outdir) / str(week))
 
  53     write_weekly_similarities(outfile, sims, week, subreddit_names)
 
  55 def pull_weeks(batch):
 
  56     return set(batch.to_pandas()['week'])
 
  58 # This requires a prefit LSI model, since we shouldn't fit different LSI models for every week. 
 
  59 def cosine_similarities_weekly_lsi(n_components=100, lsi_model=None, *args, **kwargs):
 
  60     term_colname= kwargs.get('term_colname')
 
  61     #lsi_model = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/similarity/comment_terms_compex_LSI/1000_term_LSIMOD.pkl"
 
  63     # simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=n_iter,random_state=random_state,algorithm='randomized',lsi_model_load=lsi_model)
 
  65     simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=kwargs.get('n_iter'),random_state=kwargs.get('random_state'),algorithm=kwargs.get('algorithm'),lsi_model_load=lsi_model)
 
  67     return cosine_similarities_weekly(*args, simfunc=simfunc, **kwargs)
 
  69 #tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet')
 
  70 def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, max_df=None, included_subreddits = None, topN = 500, simfunc=column_similarities):
 
  72     # do this step in parallel if we have the memory for it.
 
  73     # should be doable with pool.map
 
  75     spark = SparkSession.builder.getOrCreate()
 
  76     df = spark.read.parquet(tfidf_path)
 
  78     # load subreddits + topN
 
  80     subreddit_names = df.select(['subreddit','subreddit_id']).distinct().toPandas()
 
  81     subreddit_names = subreddit_names.sort_values("subreddit_id")
 
  82     nterms = df.select(f.max(f.col(term_colname + "_id")).alias('max')).collect()[0].max
 
  83     weeks = df.select(f.col("week")).distinct().toPandas().week.values
 
  86     print(f"computing weekly similarities")
 
  87     week_similarities_helper = partial(_week_similarities,simfunc=simfunc, tfidf_path=tfidf_path, term_colname=term_colname, outdir=outfile, min_df=min_df,max_df=max_df,included_subreddits=included_subreddits,topN=topN, subreddit_names=subreddit_names,nterms=nterms)
 
  89     pool = Pool(cpu_count())
 
  91     list(pool.imap(week_similarities_helper,weeks))
 
  93     #    with Pool(cpu_count()) as pool: # maybe it can be done with 40 cores on the huge machine?
 
  96 def author_cosine_similarities_weekly(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_test.parquet', min_df=2, max_df=None, included_subreddits=None, topN=500):
 
  97     return cosine_similarities_weekly(infile,
 
 105 def term_cosine_similarities_weekly(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', min_df=None, max_df=None, included_subreddits=None, topN=None):
 
 106         return cosine_similarities_weekly(infile,
 
 115 def author_cosine_similarities_weekly_lsi(outfile, infile = '/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_test.parquet', min_df=2, max_df=None, included_subreddits=None, topN=None,n_components=100,lsi_model=None):
 
 116     return cosine_similarities_weekly_lsi(infile,
 
 123                                           n_components=n_components,
 
 127 def term_cosine_similarities_weekly_lsi(outfile, infile = '/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', min_df=None, max_df=None, included_subreddits=None, topN=500,n_components=100,lsi_model=None):
 
 128         return cosine_similarities_weekly_lsi(infile,
 
 135                                               n_components=n_components,
 
 138 if __name__ == "__main__":
 
 139     fire.Fire({'authors':author_cosine_similarities_weekly,
 
 140                'terms':term_cosine_similarities_weekly,
 
 141                'authors-lsi':author_cosine_similarities_weekly_lsi,
 
 142                'terms-lsi':term_cosine_similarities_weekly