1 from sklearn.cluster import KMeans
 
   3 from pathlib import Path
 
   4 from multiprocessing import cpu_count
 
   5 from dataclasses import dataclass
 
   6 from clustering_base import sim_to_dist, process_clustering_result, clustering_result, read_similarity_mat
 
   9 class kmeans_clustering_result(clustering_result):
 
  13 def kmeans_clustering(similarities, *args, **kwargs):
 
  14     subreddits, mat = read_similarity_mat(similarities)
 
  15     mat = sim_to_dist(mat)
 
  16     clustering = _kmeans_clustering(mat, *args, **kwargs)
 
  17     cluster_data = process_clustering_result(clustering, subreddits)
 
  20 def _kmeans_clustering(mat, output, n_clusters, n_init=10, max_iter=100000, random_state=1968, verbose=True):
 
  22     clustering = KMeans(n_clusters=n_clusters,
 
  25                         random_state=random_state,
 
  31 def do_clustering(n_clusters, n_init, name, mat, subreddits,  max_iter, outdir:Path, random_state, verbose, alt_mat, overwrite=False):
 
  33         name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}"
 
  36     outpath = outdir / (str(name) + ".feather")
 
  38     mat = sim_to_dist(mat)
 
  39     clustering = _kmeans_clustering(mat, outpath, n_clusters, n_init, max_iter, random_state, verbose)
 
  41     outpath.parent.mkdir(parents=True,exist_ok=True)
 
  42     cluster_data.to_feather(outpath)
 
  43     cluster_data = process_clustering_result(clustering, subreddits)
 
  46         score = silhouette_score(mat, clustering.labels_, metric='precomputed')
 
  50     if alt_mat is not None:
 
  51         alt_distances = sim_to_dist(alt_mat)
 
  53             alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
 
  57     res = kmeans_clustering_result(outpath=outpath,
 
  59                                    n_clusters=n_clusters,
 
  61                                    silhouette_score=score,
 
  62                                    alt_silhouette_score=score,
 
  68 # alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
 
  69 def select_kmeans_clustering(similarities, outdir, outinfo, n_clusters=[1000], max_iter=100000, n_init=10, random_state=1968, verbose=True, alt_similarities=None):
 
  71     n_clusters = list(map(int,n_clusters))
 
  72     n_init  = list(map(int,n_init))
 
  74     if type(outdir) is str:
 
  77     outdir.mkdir(parents=True,exist_ok=True)
 
  79     subreddits, mat = read_similarity_mat(similarities,use_threads=True)
 
  81     if alt_similarities is not None:
 
  82         alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
 
  86     # get list of tuples: the combinations of hyperparameters
 
  87     hyper_grid = product(n_clusters, n_init)
 
  88     hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
 
  90     _do_clustering = partial(do_clustering,  mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
 
  93     print("running clustering selection")
 
  94     clustering_data = starmap(_do_clustering, hyper_grid)
 
  95     clustering_data = pd.DataFrame(list(clustering_data))
 
  96     clustering_data.to_csv(outinfo)
 
  98     return clustering_data
 
 100 if __name__ == "__main__":
 
 101     x = fire.Fire(select_kmeans_clustering)