1 from sklearn.metrics import silhouette_score
2 from sklearn.cluster import AffinityPropagation
3 from functools import partial
4 from clustering import _affinity_clustering, read_similarity_mat
5 from dataclasses import dataclass
6 from multiprocessing import Pool, cpu_count, Array, Process
7 from pathlib import Path
8 from itertools import product, starmap
13 # silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.
16 class clustering_result:
21 preference_quantile:float
22 silhouette_score:float
23 alt_silhouette_score:float
26 def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat):
28 name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{convergence_iter}"
31 outpath = outdir / (str(name) + ".feather")
33 clustering = _affinity_clustering(mat, subreddits, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose)
34 score = silhouette_score(clustering.affinity_matrix_, clustering.labels_, metric='precomputed')
35 alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
37 res = clustering_result(outpath=outpath,
40 convergence_iter=convergence_iter,
41 preference_quantile=preference_quantile,
42 silhouette_score=score,
43 alt_silhouette_score=score,
48 # alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
50 def select_affinity_clustering(similarities, outdir, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None):
52 damping = list(map(float,damping))
53 convergence_iter = convergence_iter = list(map(int,convergence_iter))
54 preference_quantile = list(map(float,preference_quantile))
56 if type(outdir) is str:
59 outdir.mkdir(parents=True,exist_ok=True)
61 subreddits, mat = read_similarity_mat(similarities,use_threads=True)
63 if alt_similarities is not None:
64 alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
72 # get list of tuples: the combinations of hyperparameters
73 hyper_grid = product(damping, convergence_iter, preference_quantile)
74 hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
76 _do_clustering = partial(do_clustering, mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
78 # similarities = Array('d', mat)
80 print("running clustering selection")
81 clustering_data = pool.starmap(_do_clustering, hyper_grid)
82 clustering_data = pd.DataFrame(list(clustering_data))
83 return clustering_data
86 if __name__ == "__main__":
87 fire.Fire(select_affinity_clustering)