1 from clustering_base import clustering_result, clustering_job
 
   2 from grid_sweep import grid_sweep
 
   3 from dataclasses import dataclass
 
   5 from sklearn.neighbors import NearestNeighbors
 
   8 from itertools import product, starmap, chain
 
  10 from multiprocessing import cpu_count
 
  13 def test_select_hdbscan_clustering():
 
  14     # select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
 
  15     #                           "test_hdbscan_author30k",
 
  16     #                           min_cluster_sizes=[2],
 
  18     #                           cluster_selection_epsilons=[0,0.05,0.1,0.15],
 
  19     #                           cluster_selection_methods=['eom','leaf'],
 
  20     #                           lsi_dimensions='all')
 
  21     inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/"
 
  22     outpath = "test_hdbscan";
 
  23     min_cluster_sizes=[2,3,4];
 
  25     cluster_selection_epsilons=[0,0.1,0.3,0.5];
 
  26     cluster_selection_methods=['eom'];
 
  28     gs = hdbscan_lsi_grid_sweep(inpath, "all", outpath, min_cluster_sizes, min_samples, cluster_selection_epsilons, cluster_selection_methods)
 
  30     gs.save("test_hdbscan/lsi_sweep.csv")
 
  31     # job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom')
 
  33     # print(job1.get_info())
 
  35     # df = pd.read_csv("test_hdbscan/selection_data.csv")
 
  36     # test_select_hdbscan_clustering()
 
  37     # check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather")
 
  38     # silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather")
 
  39     # c = check_clusters.merge(silscores,on='subreddit')#    fire.Fire(select_hdbscan_clustering)
 
  40 class hdbscan_grid_sweep(grid_sweep):
 
  47         super().__init__(hdbscan_job, inpath, outpath, self.namer, *args, **kwargs)
 
  52               cluster_selection_epsilon,
 
  53               cluster_selection_method):
 
  54         return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}"
 
  57 class hdbscan_clustering_result(clustering_result):
 
  60     cluster_selection_epsilon:float
 
  61     cluster_selection_method:str
 
  63 class hdbscan_job(clustering_job):
 
  64     def __init__(self, infile, outpath, name, min_cluster_size=2, min_samples=1, cluster_selection_epsilon=0, cluster_selection_method='eom'):
 
  65         super().__init__(infile,
 
  68                          call=hdbscan_job._hdbscan_clustering,
 
  69                          min_cluster_size=min_cluster_size,
 
  70                          min_samples=min_samples,
 
  71                          cluster_selection_epsilon=cluster_selection_epsilon,
 
  72                          cluster_selection_method=cluster_selection_method
 
  75         self.min_cluster_size = min_cluster_size
 
  76         self.min_samples = min_samples
 
  77         self.cluster_selection_epsilon = cluster_selection_epsilon
 
  78         self.cluster_selection_method = cluster_selection_method
 
  79 #        self.mat = 1 - self.mat
 
  81     def _hdbscan_clustering(mat, *args, **kwargs):
 
  82         print(f"running hdbscan clustering. args:{args}. kwargs:{kwargs}")
 
  84         clusterer = hdbscan.HDBSCAN(metric='precomputed',
 
  85                                     core_dist_n_jobs=cpu_count(),
 
  90         clustering = clusterer.fit(mat.astype('double'))
 
  95         result = super().get_info()
 
  96         self.result = hdbscan_clustering_result(**result.__dict__,
 
  97                                                 min_cluster_size=self.min_cluster_size,
 
  98                                                 min_samples=self.min_samples,
 
  99                                                 cluster_selection_epsilon=self.cluster_selection_epsilon,
 
 100                                                 cluster_selection_method=self.cluster_selection_method)
 
 103 def run_hdbscan_grid_sweep(savefile, inpath, outpath,  min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom']):
 
 104     """Run hdbscan clustering once or more with different parameters.
 
 107     hdbscan_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=<csv "eom"|"leaf">
 
 110     savefile: path to save the metadata and diagnostics 
 
 111     inpath: path to feather data containing a labeled matrix of subreddit similarities.
 
 112     outpath: path to output fit kmeans clusterings.
 
 113     min_cluster_sizes: one or more integers indicating the minumum cluster size
 
 114     min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
 
 115     cluster_selection_epsilon: one or more similarity thresholds for transition from dbscan to hdbscan
 
 116     cluster_selection_method: "eom" or "leaf" eom gives larger clusters. 
 
 118     obj = hdbscan_grid_sweep(inpath,
 
 120                              map(int,min_cluster_sizes),
 
 121                              map(int,min_samples),
 
 122                              map(float,cluster_selection_epsilons),
 
 123                              map(float,cluster_selection_methods))
 
 127 def KNN_distances_plot(mat,outname,k=2):
 
 128     nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat)
 
 129     distances, indices = nbrs.kneighbors(mat)
 
 131     df = pd.DataFrame({'dist':d2})
 
 132     df = df.sort_values("dist",ascending=False)
 
 133     df['idx'] = np.arange(0,d2.shape[0]) + 1
 
 134     p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50,
 
 135                                                                                       breaks = np.arange(0,10)/10)
 
 136     p.save(outname,width=16,height=10)
 
 138 def make_KNN_plots():
 
 139     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather"
 
 140     subreddits, mat = read_similarity_mat(similarities)
 
 141     mat = sim_to_dist(mat)
 
 143     KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png')
 
 145     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather"
 
 146     subreddits, mat = read_similarity_mat(similarities)
 
 147     mat = sim_to_dist(mat)
 
 148     KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png')
 
 150     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather"
 
 151     subreddits, mat = read_similarity_mat(similarities)
 
 152     mat = sim_to_dist(mat)
 
 153     KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png')
 
 155 if __name__ == "__main__":
 
 156     fire.Fire(run_hdbscan_grid_sweep)
 
 158 #    test_select_hdbscan_clustering()
 
 159     #fire.Fire(select_hdbscan_clustering)