1 from clustering_base import sim_to_dist, process_clustering_result, clustering_result, read_similarity_mat
 
   2 from clustering_base import lsi_result_mixin, lsi_mixin, clustering_job, grid_sweep, lsi_grid_sweep
 
   3 from dataclasses import dataclass
 
   5 from sklearn.neighbors import NearestNeighbors
 
   8 from itertools import product, starmap, chain
 
  10 from sklearn.metrics import silhouette_score, silhouette_samples
 
  11 from pathlib import Path
 
  12 from multiprocessing import Pool, cpu_count
 
  14 from pyarrow.feather import write_feather
 
  16 def test_select_hdbscan_clustering():
 
  17     # select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
 
  18     #                           "test_hdbscan_author30k",
 
  19     #                           min_cluster_sizes=[2],
 
  21     #                           cluster_selection_epsilons=[0,0.05,0.1,0.15],
 
  22     #                           cluster_selection_methods=['eom','leaf'],
 
  23     #                           lsi_dimensions='all')
 
  24     inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/"
 
  25     outpath = "test_hdbscan";
 
  26     min_cluster_sizes=[2,3,4];
 
  28     cluster_selection_epsilons=[0,0.1,0.3,0.5];
 
  29     cluster_selection_methods=['eom'];
 
  31     gs = hdbscan_lsi_grid_sweep(inpath, "all", outpath, min_cluster_sizes, min_samples, cluster_selection_epsilons, cluster_selection_methods)
 
  33     gs.save("test_hdbscan/lsi_sweep.csv")
 
  34     # job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom')
 
  36     # print(job1.get_info())
 
  38     # df = pd.read_csv("test_hdbscan/selection_data.csv")
 
  39     # test_select_hdbscan_clustering()
 
  40     # check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather")
 
  41     # silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather")
 
  42     # c = check_clusters.merge(silscores,on='subreddit')#    fire.Fire(select_hdbscan_clustering)
 
  44 class hdbscan_lsi_grid_sweep(lsi_grid_sweep):
 
  51                  cluster_selection_epsilons,
 
  52                  cluster_selection_methods
 
  55         super().__init__(hdbscan_lsi_job,
 
  56                          _hdbscan_lsi_grid_sweep,
 
  62                          cluster_selection_epsilons,
 
  63                          cluster_selection_methods)
 
  65 class hdbscan_grid_sweep(grid_sweep):
 
  72         super().__init__(hdbscan_job, inpath, outpath, self.namer, *args, **kwargs)
 
  77               cluster_selection_epsilon,
 
  78               cluster_selection_method):
 
  79         return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}"
 
  82 class _hdbscan_lsi_grid_sweep(grid_sweep):
 
  90         self.lsi_dim = lsi_dim
 
  91         self.jobtype = hdbscan_lsi_job
 
  92         super().__init__(self.jobtype, inpath, outpath, self.namer, self.lsi_dim, *args, **kwargs)
 
  95     def namer(self, *args, **kwargs):
 
  96         s = hdbscan_grid_sweep.namer(self, *args[1:], **kwargs)
 
  97         s += f"_lsi-{self.lsi_dim}"
 
 101 class hdbscan_clustering_result(clustering_result):
 
 104     cluster_selection_epsilon:float
 
 105     cluster_selection_method:str
 
 108 class hdbscan_clustering_result_lsi(hdbscan_clustering_result, lsi_result_mixin):
 
 111 class hdbscan_job(clustering_job):
 
 112     def __init__(self, infile, outpath, name, min_cluster_size=2, min_samples=1, cluster_selection_epsilon=0, cluster_selection_method='eom'):
 
 113         super().__init__(infile,
 
 116                          call=hdbscan_job._hdbscan_clustering,
 
 117                          min_cluster_size=min_cluster_size,
 
 118                          min_samples=min_samples,
 
 119                          cluster_selection_epsilon=cluster_selection_epsilon,
 
 120                          cluster_selection_method=cluster_selection_method
 
 123         self.min_cluster_size = min_cluster_size
 
 124         self.min_samples = min_samples
 
 125         self.cluster_selection_epsilon = cluster_selection_epsilon
 
 126         self.cluster_selection_method = cluster_selection_method
 
 127 #        self.mat = 1 - self.mat
 
 129     def _hdbscan_clustering(mat, *args, **kwargs):
 
 130         print(f"running hdbscan clustering. args:{args}. kwargs:{kwargs}")
 
 132         clusterer = hdbscan.HDBSCAN(metric='precomputed',
 
 133                                     core_dist_n_jobs=cpu_count(),
 
 138         clustering = clusterer.fit(mat.astype('double'))
 
 143         result = super().get_info()
 
 144         self.result = hdbscan_clustering_result(**result.__dict__,
 
 145                                                 min_cluster_size=self.min_cluster_size,
 
 146                                                 min_samples=self.min_samples,
 
 147                                                 cluster_selection_epsilon=self.cluster_selection_epsilon,
 
 148                                                 cluster_selection_method=self.cluster_selection_method)
 
 151 class hdbscan_lsi_job(hdbscan_job, lsi_mixin):
 
 152     def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs):
 
 159         super().set_lsi_dims(lsi_dims)
 
 162         partial_result = super().get_info()
 
 163         self.result = hdbscan_clustering_result_lsi(**partial_result.__dict__,
 
 164                                                     lsi_dimensions=self.lsi_dims)
 
 167 # def select_hdbscan_clustering(inpath,
 
 170 #                               min_cluster_sizes=[2],
 
 172 #                               cluster_selection_epsilons=[0],
 
 173 #                               cluster_selection_methods=['eom'],
 
 174 #                               lsi_dimensions='all'
 
 177 #     inpath = Path(inpath)
 
 178 #     outpath = Path(outpath)
 
 179 #     outpath.mkdir(exist_ok=True, parents=True)
 
 181 #     if lsi_dimensions is None:
 
 182 #         lsi_paths = [inpath]
 
 183 #     elif lsi_dimensions == 'all':
 
 184 #         lsi_paths = list(inpath.glob("*"))
 
 187 #         lsi_paths = [inpath / (dim + '.feather') for dim in lsi_dimensions]
 
 189 #     if lsi_dimensions is not None:
 
 190 #         lsi_nums = [p.stem for p in lsi_paths]
 
 193 #     grid = list(product(lsi_nums,
 
 196 #                         cluster_selection_epsilons,
 
 197 #                         cluster_selection_methods))
 
 199 #     # fix the output file names
 
 200 #     names = list(map(lambda t:'_'.join(map(str,t)),grid))
 
 202 #     grid = [(inpath/(str(t[0])+'.feather'),outpath/(name + '.feather'), t[0], name) + t[1:] for t, name in zip(grid, names)]
 
 204 #     with Pool(int(cpu_count()/4)) as pool:
 
 205 #         mods = starmap(hdbscan_clustering, grid)
 
 207 #     res = pd.DataFrame(mods)
 
 208 #     if outfile is None:
 
 209 #         outfile = outpath / "selection_data.csv"
 
 211 #     res.to_csv(outfile)
 
 213 # def hdbscan_clustering(similarities, output, lsi_dim, name, min_cluster_size=2, min_samples=1, cluster_selection_epsilon=0, cluster_selection_method='eom'):
 
 214 #     subreddits, mat = read_similarity_mat(similarities)
 
 215 #     mat = sim_to_dist(mat)
 
 216 #     clustering = _hdbscan_clustering(mat,
 
 217 #                                      min_cluster_size=min_cluster_size,
 
 218 #                                      min_samples=min_samples,
 
 219 #                                      cluster_selection_epsilon=cluster_selection_epsilon,
 
 220 #                                      cluster_selection_method=cluster_selection_method,
 
 221 #                                      metric='precomputed',
 
 222 #                                      core_dist_n_jobs=cpu_count()
 
 225 #     cluster_data = process_clustering_result(clustering, subreddits)
 
 226 #     isolates = clustering.labels_ == -1
 
 227 #     scoremat = mat[~isolates][:,~isolates]
 
 228 #     score = silhouette_score(scoremat, clustering.labels_[~isolates], metric='precomputed')
 
 229 #     cluster_data.to_feather(output)
 
 230 #     silhouette_samp = silhouette_samples(mat, clustering.labels_, metric='precomputed')
 
 231 #     silhouette_samp = pd.DataFrame({'subreddit':subreddits,'score':silhouette_samp})
 
 232 #     silsampout = output.parent / ("silhouette_samples" + output.name)
 
 233 #     silhouette_samp.to_feather(silsampout)
 
 235 #     result = hdbscan_clustering_result(outpath=output,
 
 236 #                                        silhouette_samples=silsampout,
 
 237 #                                        silhouette_score=score,
 
 239 #                                        min_cluster_size=min_cluster_size,
 
 240 #                                        min_samples=min_samples,
 
 241 #                                        cluster_selection_epsilon=cluster_selection_epsilon,
 
 242 #                                        cluster_selection_method=cluster_selection_method,
 
 243 #                                        lsi_dimensions=lsi_dim,
 
 244 #                                        n_isolates=isolates.sum(),
 
 245 #                                        n_clusters=len(set(clustering.labels_))
 
 252 # # for all runs we should try cluster_selection_epsilon = None
 
 253 # # for terms we should try cluster_selection_epsilon around 0.56-0.66
 
 254 # # for authors we should try cluster_selection_epsilon around 0.98-0.99
 
 255 # def _hdbscan_clustering(mat, *args, **kwargs):
 
 256 #     print(f"running hdbscan clustering. args:{args}. kwargs:{kwargs}")
 
 259 #     clusterer = hdbscan.HDBSCAN(*args,
 
 263 #     clustering = clusterer.fit(mat.astype('double'))
 
 267 def KNN_distances_plot(mat,outname,k=2):
 
 268     nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat)
 
 269     distances, indices = nbrs.kneighbors(mat)
 
 271     df = pd.DataFrame({'dist':d2})
 
 272     df = df.sort_values("dist",ascending=False)
 
 273     df['idx'] = np.arange(0,d2.shape[0]) + 1
 
 274     p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50,
 
 275                                                                                       breaks = np.arange(0,10)/10)
 
 276     p.save(outname,width=16,height=10)
 
 278 def make_KNN_plots():
 
 279     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather"
 
 280     subreddits, mat = read_similarity_mat(similarities)
 
 281     mat = sim_to_dist(mat)
 
 283     KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png')
 
 285     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather"
 
 286     subreddits, mat = read_similarity_mat(similarities)
 
 287     mat = sim_to_dist(mat)
 
 288     KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png')
 
 290     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather"
 
 291     subreddits, mat = read_similarity_mat(similarities)
 
 292     mat = sim_to_dist(mat)
 
 293     KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png')
 
 295 if __name__ == "__main__":
 
 296     fire.Fire{'grid_sweep':hdbscan_grid_sweep,
 
 297               'grid_sweep_lsi':hdbscan_lsi_grid_sweep
 
 298               'cluster':hdbscan_job,
 
 299               'cluster_lsi':hdbscan_lsi_job}
 
 301 #    test_select_hdbscan_clustering()
 
 302     #fire.Fire(select_hdbscan_clustering)