from sklearn.neighbors import NearestNeighbors
import pandas as pd
from numpy import random
+import fire
import numpy as np
def base_plot(plot_data):
+
+# base = base.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
+
+ cluster_dropdown = alt.binding_select(options=[str(c) for c in sorted(set(plot_data.cluster))])
+
+ # subreddit_dropdown = alt.binding_select(options=sorted(plot_data.subreddit))
+
+ cluster_click_select = alt.selection_single(on='click',fields=['cluster'], bind=cluster_dropdown, name=' ')
+ # cluster_select = alt.selection_single(fields=['cluster'], bind=cluster_dropdown, name='cluster')
+ # cluster_select_and = cluster_click_select & cluster_select
+ #
+ # subreddit_select = alt.selection_single(on='click',fields=['subreddit'],bind=subreddit_dropdown,name='subreddit_click')
+
+ color = alt.condition(cluster_click_select ,
+ alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')),
+ alt.value("lightgray"))
+
+
base = alt.Chart(plot_data).mark_text().encode(
alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
+ color=color,
text='subreddit')
+ base = base.add_selection(cluster_click_select)
+
+
return base
def zoom_plot(plot_data):
chart = base_plot(plot_data)
- chart = chart.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
+
chart = chart.interactive()
- chart = chart.properties(width=1275,height=1000)
+ chart = chart.properties(width=1275,height=800)
return chart
alt.X('x',axis=alt.Axis(grid=False)),
alt.Y('y',axis=alt.Axis(grid=False)),
)
-
+
viewport = viewport.properties(width=600,height=400)
viewport1 = viewport.add_selection(selector1)
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2))
)
- sr = sr.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
+
sr = sr.properties(width=1275,height=600)
distances = np.empty(shape=(centroids.shape[0],centroids.shape[0]))
groups = tsne_data.groupby('cluster')
- for centroid in centroids.itertuples():
- c_dists = groups.apply(lambda r: min(np.sqrt(np.square(centroid.x - r.x) + np.square(centroid.y-r.y))))
- distances[:,centroid.Index] = c_dists
+
+ points = np.array(tsne_data.loc[:,['x','y']])
+ centers = np.array(centroids.loc[:,['x','y']])
+
+ # point x centroid
+ point_center_distances = np.linalg.norm((points[:,None,:] - centers[None,:,:]),axis=-1)
+
+ # distances is cluster x point
+ for gid, group in groups:
+ c_dists = point_center_distances[group.index.values,:].min(axis=0)
+ distances[group.cluster.values[0],] = c_dists
# nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids)
# distances, indices = nbrs.kneighbors()
- nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)
- distances, indices = nbrs.kneighbors()
+ nearest = distances.argpartition(n_neighbors,0)
+ indices = nearest[:n_neighbors,:].T
+ # neighbor_distances = np.copy(distances)
+ # neighbor_distances.sort(0)
+ # neighbor_distances = neighbor_distances[0:n_neighbors,:]
+
+ # nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)
+ # distances, indices = nbrs.kneighbors()
color_assignments = np.repeat(-1,len(centroids))
tsne_data = tsne_data.merge(colors,on='cluster')
return(tsne_data)
-term_data = pd.read_feather("tsne_subreddit_fit.feather")
-clusters = pd.read_feather("term_3000_clusters.feather")
+def build_visualization(tsne_data, clusters, output):
+
+ # tsne_data = "/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather"
+ # clusters = "/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather"
+
+ tsne_data = pd.read_feather(tsne_data)
+ clusters = pd.read_feather(clusters)
+
+ tsne_data = assign_cluster_colors(tsne_data,clusters,10,8)
+
+ # sr_per_cluster = tsne_data.groupby('cluster').subreddit.count().reset_index()
+ # sr_per_cluster = sr_per_cluster.rename(columns={'subreddit':'cluster_size'})
+
+ tsne_data = tsne_data.merge(sr_per_cluster,on='cluster')
-tsne_data = assign_cluster_colors(term_data,clusters,10,8)
+ term_zoom_plot = zoom_plot(tsne_data)
-term_zoom_plot = zoom_plot(tsne_data)
+ term_zoom_plot.save(output)
-term_zoom_plot.save("subreddit_terms_tsne_3000.html")
+ term_viewport_plot = viewport_plot(tsne_data)
-term_viewport_plot = viewport_plot(tsne_data)
+ term_viewport_plot.save(output.replace(".html","_viewport.html"))
-term_viewport_plot.save("subreddit_terms_tsne_3000_viewport.html")
+if __name__ == "__main__":
+ fire.Fire(build_visualization)
-commenter_data = pd.read_feather("tsne_author_fit.feather")
-clusters = pd.read_feather('author_3000_clusters.feather')
-commenter_data = assign_cluster_colors(commenter_data,clusters,10,8)
-commenter_zoom_plot = zoom_plot(commenter_data)
-commenter_viewport_plot = viewport_plot(commenter_data)
-commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html")
-commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html")
+# commenter_data = pd.read_feather("tsne_author_fit.feather")
+# clusters = pd.read_feather('author_3000_clusters.feather')
+# commenter_data = assign_cluster_colors(commenter_data,clusters,10,8)
+# commenter_zoom_plot = zoom_plot(commenter_data)
+# commenter_viewport_plot = viewport_plot(commenter_data)
+# commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html")
+# commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html")
# chart = chart.properties(width=10000,height=10000)
# chart.save("test_tsne_whole.svg")