]> code.communitydata.science - cdsc_reddit.git/blobdiff - similarities/weekly_cosine_similarities.py
changes for archiving.
[cdsc_reddit.git] / similarities / weekly_cosine_similarities.py
diff --git a/similarities/weekly_cosine_similarities.py b/similarities/weekly_cosine_similarities.py
deleted file mode 100644 (file)
index e24ceee..0000000
+++ /dev/null
@@ -1,81 +0,0 @@
-from pyspark.sql import functions as f
-from pyspark.sql import SparkSession
-from pyspark.sql import Window
-import numpy as np
-import pyarrow
-import pyarrow.dataset as ds
-import pandas as pd
-import fire
-from itertools import islice, chain
-from pathlib import Path
-from similarities_helper import *
-from multiprocessing import Pool, cpu_count
-from functools import partial
-
-
-def _week_similarities(week, simfunc, tfidf_path, term_colname, min_df, max_df, included_subreddits, topN, outdir:Path):
-    term = term_colname
-    term_id = term + '_id'
-    term_id_new = term + '_id_new'
-    print(f"loading matrix: {week}")
-    entries, subreddit_names = reindex_tfidf(infile = tfidf_path,
-                                             term_colname=term_colname,
-                                             min_df=min_df,
-                                             max_df=max_df,
-                                             included_subreddits=included_subreddits,
-                                             topN=topN,
-                                             week=week)
-    mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new], entries.subreddit_id_new)))
-    print('computing similarities')
-    sims = column_similarities(mat)
-    del mat
-    sims = pd.DataFrame(sims.todense())
-    sims = sims.rename({i: sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
-    sims['_subreddit'] = names.subreddit.values
-    outfile = str(Path(outdir) / str(week))
-    write_weekly_similarities(outfile, sims, week, names)
-
-def pull_weeks(batch):
-    return set(batch.to_pandas()['week'])
-
-#tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet')
-def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, max_df=None, included_subreddits = None, topN = 500):
-    print(outfile)
-    tfidf_ds = ds.dataset(tfidf_path)
-    tfidf_ds = tfidf_ds.to_table(columns=["week"])
-    batches = tfidf_ds.to_batches()
-
-    with Pool(cpu_count()) as pool:
-        weeks = set(chain( * pool.imap_unordered(pull_weeks,batches)))
-
-    weeks = sorted(weeks)
-    # do this step in parallel if we have the memory for it.
-    # should be doable with pool.map
-
-    print(f"computing weekly similarities")
-    week_similarities_helper = partial(_week_similarities,simfunc=column_similarities, tfidf_path=tfidf_path, term_colname=term_colname, outdir=outfile, min_df=min_df,max_df=max_df,included_subreddits=included_subreddits,topN=topN)
-
-    with Pool(cpu_count()) as pool: # maybe it can be done with 40 cores on the huge machine?
-        list(pool.map(week_similarities_helper,weeks))
-
-def author_cosine_similarities_weekly(outfile, min_df=2, max_df=None, included_subreddits=None, topN=500):
-    return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet',
-                                      outfile,
-                                      'author',
-                                      min_df,
-                                      max_df,
-                                      included_subreddits,
-                                      topN)
-
-def term_cosine_similarities_weekly(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500):
-        return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
-                                          outfile,
-                                          'term',
-                                          min_df,
-                                          max_df,
-                                          included_subreddits,
-                                          topN)
-
-if __name__ == "__main__":
-    fire.Fire({'authors':author_cosine_similarities_weekly,
-               'terms':term_cosine_similarities_weekly})

Community Data Science Collective || Want to submit a patch?