import pandas as pd
import fire
from pathlib import Path
-from similarities_helper import similarities, lsi_column_similarities
+from similarities_helper import *
+#from similarities_helper import similarities, lsi_column_similarities
from functools import partial
-def lsi_similarities(infile, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, tfidf_colname='tf_idf',n_components=100,n_iter=5,random_state=1968,algorithm='arpack'):
+inpath = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/tfidf/comment_terms_compex.parquet/"
+term_colname='term'
+outfile='/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/similarity/comment_terms_compex_LSI'
+n_components=[10,50,100]
+included_subreddits="/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/included_subreddits.txt"
+n_iter=5
+random_state=1968
+algorithm='arpack'
+topN = None
+from_date=None
+to_date=None
+min_df=None
+max_df=None
+def lsi_similarities(inpath, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None, tfidf_colname='tf_idf',n_components=100,n_iter=5,random_state=1968,algorithm='arpack',lsi_model=None):
print(n_components,flush=True)
- simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=n_iter,random_state=random_state,algorithm=algorithm)
+
+ if lsi_model is None:
+ if type(n_components) == list:
+ lsi_model = Path(outfile) / f'{max(n_components)}_{term_colname}_LSIMOD.pkl'
+ else:
+ lsi_model = Path(outfile) / f'{n_components}_{term_colname}_LSIMOD.pkl'
- return similarities(infile=infile, simfunc=simfunc, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname)
+ simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=n_iter,random_state=random_state,algorithm=algorithm,lsi_model_save=lsi_model)
+
+ return similarities(inpath=inpath, simfunc=simfunc, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname)
# change so that these take in an input as an optional argument (for speed, but also for idf).
-def term_lsi_similarities(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, n_components=300,n_iter=5,random_state=1968,algorithm='arpack'):
+def term_lsi_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet',outfile=None, min_df=None, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None, algorithm='arpack', n_components=300,n_iter=5,random_state=1968):
- return lsi_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet',
+ res = lsi_similarities(inpath,
'term',
outfile,
min_df,
topN,
from_date,
to_date,
- n_components=n_components
+ n_components=n_components,
+ algorithm = algorithm
)
+ return res
-def author_lsi_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None,n_components=300,n_iter=5,random_state=1968,algorithm='arpack'):
- return lsi_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',
+def author_lsi_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',outfile=None, min_df=2, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None,algorithm='arpack',n_components=300,n_iter=5,random_state=1968):
+ return lsi_similarities(inpath,
'author',
outfile,
min_df,
n_components=n_components
)
-def author_tf_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None,n_components=300,n_iter=5,random_state=1968,algorithm='arpack'):
- return lsi_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',
+def author_tf_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',outfile=None, min_df=2, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None,n_components=300,n_iter=5,random_state=1968):
+ return lsi_similarities(inpath,
'author',
outfile,
min_df,
from_date=from_date,
to_date=to_date,
tfidf_colname='relative_tf',
- n_components=n_components
+ n_components=n_components,
+ algorithm=algorithm
)