from sklearn.cluster import AffinityPropagation
import fire
from pathlib import Path
+from multiprocessing import cpu_count
+from dataclasses import dataclass
+from clustering_base import sim_to_dist, process_clustering_result, clustering_result, read_similarity_mat
-def read_similarity_mat(similarities, use_threads=True):
- df = pd.read_feather(similarities, use_threads=use_threads)
- mat = np.array(df.drop('_subreddit',1))
- n = mat.shape[0]
- mat[range(n),range(n)] = 1
- return (df._subreddit,mat)
-
-def affinity_clustering(similarities, *args, **kwargs):
+def affinity_clustering(similarities, output, *args, **kwargs):
subreddits, mat = read_similarity_mat(similarities)
- return _affinity_clustering(mat, subreddits, *args, **kwargs)
+ clustering = _affinity_clustering(mat, *args, **kwargs)
+ cluster_data = process_clustering_result(clustering, subreddits)
+ cluster_data['algorithm'] = 'affinity'
+ return(cluster_data)
def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
'''
- similarities: feather file with a dataframe of similarity scores
+ similarities: matrix of similarity scores
preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author.
'''
verbose=verbose,
random_state=random_state).fit(mat)
-
- print(f"clustering took {clustering.n_iter_} iterations")
- clusters = clustering.labels_
-
- print(f"found {len(set(clusters))} clusters")
-
- cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
-
- cluster_sizes = cluster_data.groupby("cluster").count()
- print(f"the largest cluster has {cluster_sizes.subreddit.max()} members")
-
- print(f"the median cluster has {cluster_sizes.subreddit.median()} members")
-
- print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member")
-
- sys.stdout.flush()
+ cluster_data = process_clustering_result(clustering, subreddits)
+ output = Path(output)
+ output.parent.mkdir(parents=True,exist_ok=True)
cluster_data.to_feather(output)
print(f"saved {output}")
return clustering
+
+
if __name__ == "__main__":
fire.Fire(affinity_clustering)