import fire
from itertools import islice
from pathlib import Path
-from similarities_helper import build_cosine_similarities
+from similarities_helper import cosine_similarities
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
if exclude_phrases == True:
tfidf = tfidf.filter(~f.col(term).contains("_"))
- sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, include_subreddits, similarity_threshold)
+ sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, included_subreddits, similarity_threshold)
p = Path(outfile)
sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
- spark.stop()
-
#instead of toLocalMatrix() why not read as entries and put strait into numpy
sim_entries = pd.read_parquet(output_parquet)
df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
+ spark.stop()
df['subreddit_id_new'] = df['subreddit_id_new'] - 1
df = df.sort_values('subreddit_id_new').reset_index(drop=True)
df = df.set_index('subreddit_id_new')
similarities = similarities.join(df, on='j')
similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
- similarities.write_feather(output_feather)
- similarities.write_csv(output_csv)
+ similarities.to_feather(output_feather)
+ similarities.to_csv(output_csv)
return similarities
if __name__ == '__main__':