+import pickle
from pathlib import Path
import numpy as np
import pandas as pd
from dataclasses import dataclass
from sklearn.metrics import silhouette_score, silhouette_samples
+from collections import Counter
# this is meant to be an interface, not created directly
class clustering_job:
self.subreddits, self.mat = self.read_distance_mat(self.infile)
self.clustering = self.call(self.mat, *self.args, **self.kwargs)
self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
- self.score = self.silhouette()
self.outpath.mkdir(parents=True, exist_ok=True)
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
+
self.hasrun = True
+ self.cleanup()
+
+ def cleanup(self):
+ self.cluster_data = None
+ self.mat = None
+ self.clustering=None
+ self.subreddits=None
def get_info(self):
if not self.hasrun:
return self.result
def silhouette(self):
- isolates = self.clustering.labels_ == -1
+ counts = Counter(self.clustering.labels_)
+ singletons = [key for key, value in counts.items() if value == 1]
+ isolates = (self.clustering.labels_ == -1) | (np.isin(self.clustering.labels_,np.array(singletons)))
scoremat = self.mat[~isolates][:,~isolates]
- if scoremat.shape[0] > 0:
+ if self.n_clusters > 1:
score = silhouette_score(scoremat, self.clustering.labels_[~isolates], metric='precomputed')
silhouette_samp = silhouette_samples(self.mat, self.clustering.labels_, metric='precomputed')
silhouette_samp = pd.DataFrame({'subreddit':self.subreddits,'score':silhouette_samp})
else:
score = None
self.silsampout = None
+
return score
def read_distance_mat(self, similarities, use_threads=True):
+ print(similarities)
df = pd.read_feather(similarities, use_threads=use_threads)
- mat = np.array(df.drop('_subreddit',1))
+ mat = np.array(df.drop('_subreddit',axis=1))
n = mat.shape[0]
mat[range(n),range(n)] = 1
return (df._subreddit,1-mat)
self.n_clusters = len(set(clusters))
print(f"found {self.n_clusters} clusters")
-
cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
+
+ self.score = self.silhouette()
+ print(f"silhouette_score:{self.score}")
+
+
cluster_sizes = cluster_data.groupby("cluster").count().reset_index()
print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members")
print(f"{n_isolates1} clusters have 1 member")
- n_isolates2 = (cluster_sizes.loc[cluster_sizes.cluster==-1,['subreddit']])
-
+ n_isolates2 = cluster_sizes.loc[cluster_sizes.cluster==-1,:]['subreddit'].to_list()
+ if len(n_isolates2) > 0:
+ n_isloates2 = n_isolates2[0]
print(f"{n_isolates2} subreddits are in cluster -1",flush=True)
if n_isolates1 == 0:
return cluster_data
+class twoway_clustering_job(clustering_job):
+ def __init__(self, infile, outpath, name, call1, call2, args1, args2):
+ self.outpath = Path(outpath)
+ self.call1 = call1
+ self.args1 = args1
+ self.call2 = call2
+ self.args2 = args2
+ self.infile = Path(infile)
+ self.name = name
+ self.hasrun = False
+ self.args = args1|args2
+
+ def run(self):
+ self.subreddits, self.mat = self.read_distance_mat(self.infile)
+ self.step1 = self.call1(self.mat, **self.args1)
+ self.clustering = self.call2(self.mat, self.step1, **self.args2)
+ self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
+ self.hasrun = True
+ self.after_run()
+ self.cleanup()
+
+ def after_run(self):
+ self.score = self.silhouette()
+ self.outpath.mkdir(parents=True, exist_ok=True)
+ print(self.outpath/(self.name+".feather"))
+ self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
+
+
+ def cleanup(self):
+ super().cleanup()
+ self.step1 = None
+
@dataclass
class clustering_result:
outpath:Path