]> code.communitydata.science - cdsc_reddit.git/blobdiff - clustering/umap_hdbscan_clustering.py
add support for umap->hdbscan clustering method
[cdsc_reddit.git] / clustering / umap_hdbscan_clustering.py
diff --git a/clustering/umap_hdbscan_clustering.py b/clustering/umap_hdbscan_clustering.py
new file mode 100644 (file)
index 0000000..6a4d2a1
--- /dev/null
@@ -0,0 +1,221 @@
+from clustering_base import clustering_result, clustering_job, twoway_clustering_job
+from hdbscan_clustering import hdbscan_clustering_result
+import umap
+from grid_sweep import twoway_grid_sweep
+from dataclasses import dataclass
+import hdbscan
+from sklearn.neighbors import NearestNeighbors
+import plotnine as pn
+import numpy as np
+from itertools import product, starmap, chain
+import pandas as pd
+from multiprocessing import cpu_count
+import fire
+
+def test_select_hdbscan_clustering():
+    # select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
+    #                           "test_hdbscan_author30k",
+    #                           min_cluster_sizes=[2],
+    #                           min_samples=[1,2],
+    #                           cluster_selection_epsilons=[0,0.05,0.1,0.15],
+    #                           cluster_selection_methods=['eom','leaf'],
+    #                           lsi_dimensions='all')
+    inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI"
+    outpath = "test_umap_hdbscan_lsi"
+    min_cluster_sizes=[2,3,4]
+    min_samples=[1,2,3]
+    cluster_selection_epsilons=[0,0.1,0.3,0.5]
+    cluster_selection_methods=[1]
+    lsi_dimensions='all'
+    n_neighbors = [5,10,15,25,35,70,100]
+    learning_rate = [0.1,0.5,1,2]
+    min_dist = [0.5,1,1.5,2]
+    local_connectivity = [1,2,3,4,5]
+
+    hdbscan_params = {"min_cluster_sizes":min_cluster_sizes, "min_samples":min_samples, "cluster_selection_epsilons":cluster_selection_epsilons, "cluster_selection_methods":cluster_selection_methods}
+    umap_params = {"n_neighbors":n_neighbors, "learning_rate":learning_rate, "min_dist":min_dist, "local_connectivity":local_connectivity}
+    gs = umap_hdbscan_grid_sweep(inpath, "all", outpath, hdbscan_params,umap_params)
+
+    # gs.run(20)
+    # gs.save("test_hdbscan/lsi_sweep.csv")
+
+
+    # job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom')
+    # job1.run()
+    # print(job1.get_info())
+
+    # df = pd.read_csv("test_hdbscan/selection_data.csv")
+    # test_select_hdbscan_clustering()
+    # check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather")
+    # silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather")
+    # c = check_clusters.merge(silscores,on='subreddit')#    fire.Fire(select_hdbscan_clustering)
+class umap_hdbscan_grid_sweep(twoway_grid_sweep):
+    def __init__(self,
+                 inpath,
+                 outpath,
+                 umap_params,
+                 hdbscan_params):
+
+        super().__init__(umap_hdbscan_job, inpath, outpath, self.namer, umap_params, hdbscan_params)
+
+    def namer(self,
+              min_cluster_size,
+              min_samples,
+              cluster_selection_epsilon,
+              cluster_selection_method,
+              n_neighbors,
+              learning_rate,
+              min_dist,
+              local_connectivity
+              ):
+        return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}_nn-{n_neighbors}_lr-{learning_rate}_md-{min_dist}_lc-{local_connectivity}"
+
+@dataclass
+class umap_hdbscan_clustering_result(hdbscan_clustering_result):
+    n_neighbors:int
+    learning_rate:float
+    min_dist:float
+    local_connectivity:int
+
+class umap_hdbscan_job(twoway_clustering_job):
+    def __init__(self, infile, outpath, name,
+                 umap_args = {"n_neighbors":15, "learning_rate":1, "min_dist":1, "local_connectivity":1},
+                 hdbscan_args = {"min_cluster_size":2, "min_samples":1, "cluster_selection_epsilon":0, "cluster_selection_method":'eom'},
+                 save_step1 = False,
+                 *args,
+                 **kwargs):
+        super().__init__(infile,
+                         outpath,
+                         name,
+                         call1=umap_hdbscan_job._umap_embedding,
+                         call2=umap_hdbscan_job._hdbscan_clustering,
+                         args1=umap_args,
+                         args2=hdbscan_args,
+                         save_step1=save_step1,
+                         *args,
+                         **kwargs
+                         )
+
+        self.n_neighbors = umap_args['n_neighbors']
+        self.learning_rate = umap_args['learning_rate']
+        self.min_dist = umap_args['min_dist']
+        self.local_connectivity = umap_args['local_connectivity']
+        self.min_cluster_size = hdbscan_args['min_cluster_size']
+        self.min_samples = hdbscan_args['min_samples']
+        self.cluster_selection_epsilon = hdbscan_args['cluster_selection_epsilon']
+        self.cluster_selection_method = hdbscan_args['cluster_selection_method']
+
+    def after_run(self):
+        coords = self.step1.emedding_
+        self.cluster_data['x'] = coords[:,0]
+        self.cluster_data['y'] = coords[:,1]
+        super().after_run()
+
+
+    def _umap_embedding(mat, **umap_args):
+        print(f"running umap embedding. umap_args:{umap_args}")
+        umapmodel = umap.UMAP(metric='precomputed', **umap_args)
+        umapmodel = umapmodel.fit(mat)
+        return umapmodel
+
+    def _hdbscan_clustering(mat, umapmodel, **hdbscan_args):
+        print(f"running hdbascan clustering. hdbscan_args:{hdbscan_args}")
+        
+        umap_coords = umapmodel.transform(mat)
+
+        clusterer = hdbscan.HDBSCAN(metric='euclidean',
+                                    core_dist_n_jobs=cpu_count(),
+                                    **hdbscan_args
+                                    )
+    
+        clustering = clusterer.fit(umap_coords)
+    
+        return(clustering)
+
+    def get_info(self):
+        result = super().get_info()
+        self.result = umap_hdbscan_clustering_result(**result.__dict__,
+                                                     min_cluster_size=self.min_cluster_size,
+                                                     min_samples=self.min_samples,
+                                                     cluster_selection_epsilon=self.cluster_selection_epsilon,
+                                                     cluster_selection_method=self.cluster_selection_method,
+                                                     n_neighbors = self.n_neighbors,
+                                                     learning_rate = self.learning_rate,
+                                                     min_dist = self.min_dist,
+                                                     local_connectivity=self.local_connectivity
+                                                     )
+        return self.result
+
+def run_umap_hdbscan_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], learning_rate=[1], min_dist=[1], local_connectivity=[1],
+                                min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom']):
+    """Run umap + hdbscan clustering once or more with different parameters.
+    
+    Usage:
+    umap_hdbscan_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --n_neighbors=<csv> --learning_rate=<csv> --min_dist=<csv> --local_connectivity=<csv> --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=<csv "eom"|"leaf">
+
+    Keword arguments:
+    savefile: path to save the metadata and diagnostics 
+    inpath: path to feather data containing a labeled matrix of subreddit similarities.
+    outpath: path to output fit kmeans clusterings.
+    n_neighbors: umap parameter takes integers greater than 1
+    learning_rate: umap parameter takes positive real values
+    min_dist: umap parameter takes positive real values
+    local_connectivity: umap parameter takes positive integers
+    min_cluster_sizes: one or more integers indicating the minumum cluster size
+    min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
+    cluster_selection_epsilon: one or more similarity thresholds for transition from dbscan to hdbscan
+    cluster_selection_method: "eom" or "leaf" eom gives larger clusters. 
+    """    
+    
+    umap_args = {'n_neighbors':list(map(int, n_neighbors)),
+                 'learning_rate':list(map(float,learning_rate)),
+                 'min_dist':list(map(float,min_dist)),
+                 'local_connectivity':list(map(int,local_connectivity)),
+                 }
+
+    hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
+                    'min_samples':list(map(int,min_samples)),
+                    'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
+                    'cluster_selection_method':cluster_selection_methods}
+
+    obj = umap_hdbscan_grid_sweep(inpath,
+                                  outpath,
+                                  umap_args,
+                                  hdbscan_args)
+    obj.run(cores=10)
+    obj.save(savefile)
+
+    
+def KNN_distances_plot(mat,outname,k=2):
+    nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat)
+    distances, indices = nbrs.kneighbors(mat)
+    d2 = distances[:,-1]
+    df = pd.DataFrame({'dist':d2})
+    df = df.sort_values("dist",ascending=False)
+    df['idx'] = np.arange(0,d2.shape[0]) + 1
+    p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50,
+                                                                                      breaks = np.arange(0,10)/10)
+    p.save(outname,width=16,height=10)
+    
+def make_KNN_plots():
+    similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather"
+    subreddits, mat = read_similarity_mat(similarities)
+    mat = sim_to_dist(mat)
+
+    KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png')
+
+    similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather"
+    subreddits, mat = read_similarity_mat(similarities)
+    mat = sim_to_dist(mat)
+    KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png')
+
+    similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather"
+    subreddits, mat = read_similarity_mat(similarities)
+    mat = sim_to_dist(mat)
+    KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png')
+
+if __name__ == "__main__":
+    fire.Fire(run_umap_hdbscan_grid_sweep)
+    
+#    test_select_hdbscan_clustering()
+    #fire.Fire(select_hdbscan_clustering)  

Community Data Science Collective || Want to submit a patch?