from pandas.core.groupby import DataFrameGroupBy as GroupBy
import fire
import numpy as np
+import sys
+sys.path.append("..")
+sys.path.append("../similarities")
+from similarities.similarities_helper import read_tfidf_matrix, reindex_tfidf, reindex_tfidf_time_interval
+
+# this is the mean of the ratio of the overlap to the focal size.
+# mean shared membership per focal community member
+# the input is the author tf-idf matrix
def overlap_density(inpath, outpath, agg = pd.DataFrame.sum):
df = pd.read_feather(inpath)
res.to_feather(outpath)
return res
+
+# inpath="/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet";
+# min_df=1;
+# included_subreddits=None;
+# topN=10000;
+# outpath="/gscratch/comdata/output/reddit_density/wang_overlaps_10000.feather"
+
+# to_date=2019-10-28
+
+
def author_overlap_density(inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather",
outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather", agg=pd.DataFrame.sum):
if type(agg) == str:
fire.Fire({'authors':author_overlap_density,
'terms':term_overlap_density,
'author_weekly':author_overlap_density_weekly,
- 'term_weekly':term_overlap_density_weekly})
+ 'term_weekly':term_overlap_density_weekly,
+ 'wang_overlaps':wang_overlap_density})