]> code.communitydata.science - cdsc_reddit.git/blobdiff - similarities_helper.py
Update code for building simlarity matrices.
[cdsc_reddit.git] / similarities_helper.py
index c69983f7f9b027d0e08903731052673fe23489d5..5933f8ece33369eca52e9b5542b146c25f582c35 100644 (file)
@@ -2,11 +2,67 @@ from pyspark.sql import Window
 from pyspark.sql import functions as f
 from enum import Enum
 from pyspark.mllib.linalg.distributed import CoordinateMatrix
+from tempfile import TemporaryDirectory
+import pyarrow
+import pyarrow.dataset as ds
+from scipy.sparse import csr_matrix
+import pandas as pd
+import numpy as np
 
 class tf_weight(Enum):
     MaxTF = 1
     Norm05 = 2
 
+def read_tfidf_matrix(path,term_colname):
+    term = term_colname
+    term_id = term + '_id'
+    term_id_new = term + '_id_new'
+
+    dataset = ds.dataset(path,format='parquet')
+    entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new]).to_pandas()
+    return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1))))
+    
+def column_similarities(mat):
+    norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
+    mat = mat.multiply(1/norm)
+    sims = mat.T @ mat
+    return(sims)
+
+
+def prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits):
+    term = term_colname
+    term_id = term + '_id'
+    term_id_new = term + '_id_new'
+
+    if min_df is None:
+        min_df = 0.1 * len(included_subreddits)
+
+    tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
+
+    # reset the subreddit ids
+    sub_ids = tfidf.select('subreddit_id').distinct()
+    sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
+    tfidf = tfidf.join(sub_ids,'subreddit_id')
+
+    # only use terms in at least min_df included subreddits
+    new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
+#    new_count = new_count.filter(f.col('new_count') >= min_df)
+    tfidf = tfidf.join(new_count,term_id,how='inner')
+    
+    # reset the term ids
+    term_ids = tfidf.select([term_id]).distinct()
+    term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
+    tfidf = tfidf.join(term_ids,term_id)
+
+    tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
+    # tfidf = tfidf.withColumnRenamed("idf","idf_old")
+    # tfidf = tfidf.withColumn("idf",f.log(25000/f.col("count")))
+    tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
+    
+    tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
+    
+    tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
+    return tempdir
 
 def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
     term = term_colname

Community Data Science Collective || Want to submit a patch?