+import pickle
from pathlib import Path
import numpy as np
import pandas as pd
self.subreddits, self.mat = self.read_distance_mat(self.infile)
self.clustering = self.call(self.mat, *self.args, **self.kwargs)
self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
- self.score = self.silhouette()
self.outpath.mkdir(parents=True, exist_ok=True)
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
+
self.hasrun = True
+ self.cleanup()
+
+ def cleanup(self):
+ self.cluster_data = None
+ self.mat = None
+ self.clustering=None
+ self.subreddits=None
def get_info(self):
if not self.hasrun:
else:
score = None
self.silsampout = None
+
return score
def read_distance_mat(self, similarities, use_threads=True):
+ print(similarities)
df = pd.read_feather(similarities, use_threads=use_threads)
- mat = np.array(df.drop('_subreddit',1))
+ mat = np.array(df.drop('_subreddit',axis=1))
n = mat.shape[0]
mat[range(n),range(n)] = 1
return (df._subreddit,1-mat)
self.n_clusters = len(set(clusters))
print(f"found {self.n_clusters} clusters")
-
cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
+
+ self.score = self.silhouette()
+ print(f"silhouette_score:{self.score}")
+
+
cluster_sizes = cluster_data.groupby("cluster").count().reset_index()
print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members")
return cluster_data
+class twoway_clustering_job(clustering_job):
+ def __init__(self, infile, outpath, name, call1, call2, args1, args2):
+ self.outpath = Path(outpath)
+ self.call1 = call1
+ self.args1 = args1
+ self.call2 = call2
+ self.args2 = args2
+ self.infile = Path(infile)
+ self.name = name
+ self.hasrun = False
+ self.args = args1|args2
+
+ def run(self):
+ self.subreddits, self.mat = self.read_distance_mat(self.infile)
+ self.step1 = self.call1(self.mat, **self.args1)
+ self.clustering = self.call2(self.mat, self.step1, **self.args2)
+ self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
+ self.hasrun = True
+ self.after_run()
+ self.cleanup()
+
+ def after_run(self):
+ self.score = self.silhouette()
+ self.outpath.mkdir(parents=True, exist_ok=True)
+ print(self.outpath/(self.name+".feather"))
+ self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
+
+
+ def cleanup(self):
+ super().cleanup()
+ self.step1 = None
+
@dataclass
class clustering_result:
outpath:Path