+++ /dev/null
-from umap_hdbscan_clustering import umap_hdbscan_job, umap_hdbscan_grid_sweep, umap_hdbscan_clustering_result
-from lsi_base import twoway_lsi_grid_sweep, lsi_mixin, lsi_result_mixin
-from grid_sweep import twoway_grid_sweep
-import fire
-from dataclasses import dataclass
-
-@dataclass
-class umap_hdbscan_clustering_result_lsi(umap_hdbscan_clustering_result, lsi_result_mixin):
- pass
-
-class umap_hdbscan_lsi_job(umap_hdbscan_job, lsi_mixin):
- def __init__(self, infile, outpath, name, umap_args, hdbscan_args, lsi_dims, save_step1=False):
- super().__init__(
- infile,
- outpath,
- name,
- umap_args,
- hdbscan_args,
- save_step1
- )
- super().set_lsi_dims(lsi_dims)
-
- def get_info(self):
- partial_result = super().get_info()
- self.result = umap_hdbscan_clustering_result_lsi(**partial_result.__dict__,
- lsi_dimensions=self.lsi_dims)
- return self.result
-
-class umap_hdbscan_lsi_grid_sweep(twoway_lsi_grid_sweep):
- def __init__(self,
- inpath,
- lsi_dims,
- outpath,
- umap_args,
- hdbscan_args,
- save_step1
- ):
-
- super().__init__(umap_hdbscan_lsi_job,
- _umap_hdbscan_lsi_grid_sweep,
- inpath,
- lsi_dims,
- outpath,
- umap_args,
- hdbscan_args,
- save_step1
- )
-
-
-
-class _umap_hdbscan_lsi_grid_sweep(twoway_grid_sweep):
- def __init__(self,
- inpath,
- outpath,
- lsi_dim,
- umap_args,
- hdbscan_args,
- save_step1):
-
- self.lsi_dim = lsi_dim
- self.jobtype = umap_hdbscan_lsi_job
- super().__init__(self.jobtype, inpath, outpath, self.namer, umap_args, hdbscan_args, save_step1, lsi_dim)
-
-
- def namer(self, *args, **kwargs):
- s = umap_hdbscan_grid_sweep.namer(self, *args, **kwargs)
- s += f"_lsi-{self.lsi_dim}"
- return s
-
-def run_umap_hdbscan_lsi_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], learning_rate=[1], min_dist=[1], local_connectivity=[1],
- min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom'], lsi_dimensions='all', save_step1 = False):
- """Run hdbscan clustering once or more with different parameters.
-
- Usage:
- hdbscan_clustering_lsi --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=[eom]> --lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
-
- Keword arguments:
- savefile: path to save the metadata and diagnostics
- inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
- outpath: path to output fit clusterings.
- min_cluster_sizes: one or more integers indicating the minumum cluster size
- min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
- cluster_selection_epsilons: one or more similarity thresholds for transition from dbscan to hdbscan
- cluster_selection_methods: one or more of "eom" or "leaf" eom gives larger clusters.
- lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
- """
-
-
- umap_args = {'n_neighbors':list(map(int, n_neighbors)),
- 'learning_rate':list(map(float,learning_rate)),
- 'min_dist':list(map(float,min_dist)),
- 'local_connectivity':list(map(int,local_connectivity)),
- }
-
- hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
- 'min_samples':list(map(int,min_samples)),
- 'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
- 'cluster_selection_method':cluster_selection_methods}
-
- obj = umap_hdbscan_lsi_grid_sweep(inpath,
- lsi_dimensions,
- outpath,
- umap_args,
- hdbscan_args,
- save_step1
- )
-
-
- obj.run(10)
- obj.save(savefile)
-
-
-if __name__ == "__main__":
- fire.Fire(run_umap_hdbscan_lsi_grid_sweep)